“Kurva Sklearn ROC” Kode Jawaban

Kurva Sklearn ROC

import sklearn.metrics as metrics
# calculate the fpr and tpr for all thresholds of the classification
probs = model.predict_proba(X_test)
preds = probs[:,1]
fpr, tpr, threshold = metrics.roc_curve(y_test, preds)
roc_auc = metrics.auc(fpr, tpr)

# method I: plt
import matplotlib.pyplot as plt
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

# method II: ggplot
from ggplot import *
df = pd.DataFrame(dict(fpr = fpr, tpr = tpr))
ggplot(df, aes(x = 'fpr', y = 'tpr')) + geom_line() + geom_abline(linetype = 'dashed')
Better Beaver

scikit belajar kurva roc

   fpr,tpr = sklearn.metrics.roc_curve(y_true, y_score, average='macro', sample_weight=None)
Difficult Donkey

scikit belajar kurva roc

auc = sklearn.metric.auc(fpr, tpr)
Difficult Donkey

Jawaban yang mirip dengan “Kurva Sklearn ROC”

Pertanyaan yang mirip dengan “Kurva Sklearn ROC”

Lebih banyak jawaban terkait untuk “Kurva Sklearn ROC” di Python

Jelajahi jawaban kode populer menurut bahasa

Jelajahi bahasa kode lainnya