“Tes Dev Tes Dev SPET SKLEARN” Kode Jawaban

Tes kereta split sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
The Frenchy

sklearn train_test_split

 import numpy as np
 from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.33, random_state=42
)
vcwild

Tes Dev Tes Dev SPET SKLEARN

train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])
Jittery Jellyfish

split tes kereta sklearn

##sklearn train test split

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

#OR Randomly split your whole dataset to your desired percentage, insted of using a  ttarget variable:

training_data = df.sample(frac=0.8, random_state=25) #here we choose 80% as our training sample and for reproduciblity, we use random_state of 42
testing_data = df.drop(training_data.index) # testing sample is 20% of our initial data

DON-PECH

Jawaban yang mirip dengan “Tes Dev Tes Dev SPET SKLEARN”

Pertanyaan yang mirip dengan “Tes Dev Tes Dev SPET SKLEARN”

Jelajahi jawaban kode populer menurut bahasa

Jelajahi bahasa kode lainnya