“regresi logistik sklearn” Kode Jawaban

Algoritma regresi logistik dalam python

# import the class
from sklearn.linear_model import LogisticRegression

# instantiate the model (using the default parameters)
logreg = LogisticRegression()

# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)
Wide-eyed Whale

Regresi multinomial scikit belajar

model1 = LogisticRegression(random_state=0, multi_class='multinomial', penalty='none', solver='newton-cg').fit(X_train, y_train)
preds = model1.predict(X_test)

#print the tunable parameters (They were not tuned in this example, everything kept as default)
params = model1.get_params()
print(params)

{'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 100, 'multi_class': 'multinomial', 'n_jobs': None, 'penalty': 'none', 'random_state': 0, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}
Adventurous Alligator

regresi logistik sklearn

LogisticRegression(penalty='l2',C=1.0, fit_intercept=True, max_iter=100)
VIvek

Algoritma regresi logistik dalam python

# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
cnf_matrix
Wide-eyed Whale

Jawaban yang mirip dengan “regresi logistik sklearn”

Pertanyaan yang mirip dengan “regresi logistik sklearn”

Lebih banyak jawaban terkait untuk “regresi logistik sklearn” di Python

Jelajahi jawaban kode populer menurut bahasa

Jelajahi bahasa kode lainnya