Saya punya data ini:
set.seed(1)
predictor <- rnorm(20)
set.seed(1)
counts <- c(sample(1:1000, 20))
df <- data.frame(counts, predictor)
Saya menjalankan regresi poisson
poisson_counts <- glm(counts ~ predictor, data = df, family = "poisson")
Dan regresi binomial negatif:
require(MASS)
nb_counts <- glm.nb(counts ~ predictor, data = df)
Lalu saya menghitung statistik dispersi untuk regresi poisson:
sum(residuals(poisson_counts, type="pearson")^2)/df.residual(poisson_counts)
# [1] 145.4905
Dan regresi binomial negatif:
sum(residuals(nb_counts, type="pearson")^2)/df.residual(nb_counts)
# [1] 0.7650289
Adakah yang bisa menjelaskan, TANPA MENGGUNAKAN PERSAMAAN, mengapa statistik dispersi untuk regresi binomial negatif jauh lebih kecil daripada statistik dispersi untuk regresi poisson?
Untuk model Poisson, jika expection untuk th pengamatan Y i adalah μ i varians adalah μ i , & sisa Pearson karena itusaya Ysaya μsaya μsaya
di mana μ adalah estimasi mean. Parameterisasi dari model binomial negatif yang digunakan dalam MASS dijelaskan di sini . Jika expection untuk i th pengamatan Y i adalah μ i varians adalah μ i + μ 2μ^ saya Ysaya μsaya , & oleh karena itu residu Pearsonμsaya+ μ2θ
sumber