Ini.
Sebelum kontinuitas, yang merupakan properti dari relasi preferensi, relasi preferensi sendiri telah didefinisikan sebagai relasi biner yang dicirikan oleh transitivitas, dan, pada awalnya, dengan kelengkapan .
Kemudian jika , itu berarti bahwa ada beberapa nilai di suatu tempat di , panggil mereka yang ≿
S1∪S2≠[0,1]α[0,1]α~
tidak juga
{α~L+(1−α~)L′≿L′′}
maupun
{L′′≿α~L+(1−α~)L′}
Dengan kata lain, untuk , pasangan tidak dapat dipesan sama sekali . Tapi ini bertentangan dengan fondasi kelengkapan yang diperlukan untuk bahkan mendapatkan hubungan preferensi (seperti yang tentu saja digunakan dalam teori kami. Psikolog saya kira akan tidak setuju).α~
Juga, perhatikan bahwa kelengkapan didefinisikan di atas semua pasangan yang mungkin, bahkan jika, dalam situasi tertentu, kami memilih untuk membatasi ruang lotere menjadi sesuatu yang lebih kecil. Apakah lotere yang dipertimbangkan milik ruang lotre yang ditentukan, benar-benar tidak relevan. Orang yang memiliki preferensi harus dapat memesannya dalam hal apa pun, bahkan sebagai skenario "hipotetis" (walaupun secara tegas, untuk masalah tertentu, kami memiliki "kemewahan" untuk memaksakan kelengkapan hanya dalam hal lotere yang tersedia, sementara " tetap agnostik "dalam hal kelengkapan jika kita memperluas ruang lotere. Namun" pelemahan "ini pada pemaksaan aksioma kelengkapan, tidak benar-benar membawa keuntungan apa pun).
Alecos Papadopoulos
sumber