Dalam perhitungan kuantum adiabatik (AQC), seseorang mengkodekan solusi untuk masalah optimisasi dalam keadaan dasar [masalah] Hamiltonian . Untuk sampai ke keadaan dasar ini, Anda mulai dalam keadaan awal (ground) yang mudah didinginkan dengan Hamiltonian dan " " ( adiabatik) menuju , yaituH i H p
dimana . Detail tentang AQC: http://arxiv.org/abs/quant-ph/0001106v1
Hal yang menarik tentang masalah ini adalah untuk mencoba memahami kesenjangan antara nilai eigen keadaan dasar dan keadaan tereksitasi pertama, karena ini menentukan kompleksitas masalah. Satu hal yang menarik untuk dilakukan adalah mencoba dan mengatakan sesuatu tentang perilaku tipe orang Hamilton tertentu. Orang dapat menganalisis spektrum energi dari kasus qubit kecil dengan simulasi untuk memahami kompleksitas masalah, tetapi ini menjadi tidak mungkin dengan sangat cepat.
Yang ingin saya ketahui adalah apakah ada cara geometris atau topologis untuk melihat bagaimana orang Hamilton berperilaku tertentu. Seseorang menyebutkan bahwa bentuk di atas dapat dipandang sebagai homotopy (jika fungsi skalar digeneralisasi ke operator), tetapi saya tidak berpengalaman dalam matematika tingkat tinggi sehingga saya tidak yakin apa artinya ini atau apa yang bisa saya lakukan dengan itu.
Mungkin bisa membantu untuk menyebutkan bahwa Hamiltonians biasanya adalah Hamiltonian spin-glass (setidaknya, itulah ). Saya juga tidak banyak membaca literatur mekanika statistik tingkat lanjut, jadi ini mungkin jalan lain.
Saya bertanya-tanya apakah ada yang bisa memberikan penjelasan tentang ini, atau setidaknya memberikan beberapa referensi, kata kunci yang menarik, dll.
Jawaban:
pertanyaan yang sangat menantang / maju / provokatif; berikut, jawaban singkat / samar / tentatif [mungkin / mudah-mudahan lebih baik daripada tidak sama sekali] mempertimbangkan geometri dalam komputasi QM secara umum & beberapa referensi / petunjuk. geometri digunakan dalam berbagai cara di QM secara umum, dan tampaknya menjadi pertanyaan terbuka dan menantang pekerjaan dalam proses bagaimana menentukan "gambar geometris" yang koheren / alami untuk QM, dan tampaknya ada banyak cara untuk melakukannya, dan saat ini tidak ada pendekatan yang disepakati secara umum, terpadu atau standar. juga, beberapa arah bisa sangat abstrak yang mencerminkan arah penelitian matematika yang dikembangkan sebagian besar secara independen dari fisika.
negara 2-qubit telah lebih banyak dipelajari dan ada lebih banyak kesempatan untuk menciptakan gambar ada 1 st dan mungkin menggunakannya sebagai agak daerah "mainan" yang dapat diperluas kemudian. (perhatikan bahwa komputasi QM adiabatik masih didasarkan pada qubit.) juga ada studi yang relatif baru tentang "quantum dischord" yang dipandang menjanjikan oleh beberapa (tetapi juga kontroversial) & mungkin menjadi bagian dari jawaban seperti pada ref berikut.
bola Bloch adalah gambaran geometris yang jelas untuk qubit tunggal dan memiliki beberapa generalisasi untuk keadaan murni .
Gambar geometris perselisihan kuantum untuk negara kuantum dua-qubit Shi, Jiang, Sun, Du
Geometri Komputasi Quantum Diskrit Hanson, Ortiz, Sabry, Tai
Komputasi kuantum: Kekuatan perselisihan Merali / Alam
sumber