Ini dia - tiga contoh. Saya telah membuat kode jauh lebih efisien daripada yang ada di aplikasi nyata untuk membuat logika lebih jelas (saya harap.)
# We'll assume estimation of a Poisson mean as a function of x
x <- runif(100)
y <- rpois(100,5*x) # beta = 5 where mean(y[i]) = beta*x[i]
# Prior distribution on log(beta): t(5) with mean 2
# (Very spread out on original scale; median = 7.4, roughly)
log_prior <- function(log_beta) dt(log_beta-2, 5, log=TRUE)
# Log likelihood
log_lik <- function(log_beta, y, x) sum(dpois(y, exp(log_beta)*x, log=TRUE))
# Random Walk Metropolis-Hastings
# Proposal is centered at the current value of the parameter
rw_proposal <- function(current) rnorm(1, current, 0.25)
rw_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.25, log=TRUE)
rw_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.25, log=TRUE)
rw_alpha <- function(proposal, current) {
# Due to the structure of the rw proposal distribution, the rw_p_proposal_given_current and
# rw_p_current_given_proposal terms cancel out, so we don't need to include them - although
# logically they are still there: p(prop|curr) = p(curr|prop) for all curr, prop
exp(log_lik(proposal, y, x) + log_prior(proposal) - log_lik(current, y, x) - log_prior(current))
}
# Independent Metropolis-Hastings
# Note: the proposal is independent of the current value (hence the name), but I maintain the
# parameterization of the functions anyway. The proposal is not ignorable any more
# when calculation the acceptance probability, as p(curr|prop) != p(prop|curr) in general.
ind_proposal <- function(current) rnorm(1, 2, 1)
ind_p_proposal_given_current <- function(proposal, current) dnorm(proposal, 2, 1, log=TRUE)
ind_p_current_given_proposal <- function(current, proposal) dnorm(current, 2, 1, log=TRUE)
ind_alpha <- function(proposal, current) {
exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal)
- log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current))
}
# Vanilla Metropolis-Hastings - the independence sampler would do here, but I'll add something
# else for the proposal distribution; a Normal(current, 0.1+abs(current)/5) - symmetric but with a different
# scale depending upon location, so can't ignore the proposal distribution when calculating alpha as
# p(prop|curr) != p(curr|prop) in general
van_proposal <- function(current) rnorm(1, current, 0.1+abs(current)/5)
van_p_proposal_given_current <- function(proposal, current) dnorm(proposal, current, 0.1+abs(current)/5, log=TRUE)
van_p_current_given_proposal <- function(current, proposal) dnorm(current, proposal, 0.1+abs(proposal)/5, log=TRUE)
van_alpha <- function(proposal, current) {
exp(log_lik(proposal, y, x) + log_prior(proposal) + ind_p_current_given_proposal(current, proposal)
- log_lik(current, y, x) - log_prior(current) - ind_p_proposal_given_current(proposal, current))
}
# Generate the chain
values <- rep(0, 10000)
u <- runif(length(values))
naccept <- 0
current <- 1 # Initial value
propfunc <- van_proposal # Substitute ind_proposal or rw_proposal here
alphafunc <- van_alpha # Substitute ind_alpha or rw_alpha here
for (i in 1:length(values)) {
proposal <- propfunc(current)
alpha <- alphafunc(proposal, current)
if (u[i] < alpha) {
values[i] <- exp(proposal)
current <- proposal
naccept <- naccept + 1
} else {
values[i] <- exp(current)
}
}
naccept / length(values)
summary(values)
Untuk vanilla sampler, kita mendapatkan:
> naccept / length(values)
[1] 0.1737
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.843 5.153 5.388 5.378 5.594 6.628
yang merupakan kemungkinan penerimaan yang rendah, tetapi masih ... menyetel proposal akan membantu di sini, atau mengadopsi yang lain. Inilah hasil proposal jalan acak:
> naccept / length(values)
[1] 0.2902
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.718 5.147 5.369 5.370 5.584 6.781
Hasil serupa, seperti yang diharapkan, dan probabilitas penerimaan yang lebih baik (bertujuan ~ 50% dengan satu parameter.)
Dan, untuk kelengkapan, sampler kemerdekaan:
> naccept / length(values)
[1] 0.0684
> summary(values)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.990 5.162 5.391 5.380 5.577 8.802
Karena tidak "beradaptasi" dengan bentuk posterior, ia cenderung memiliki probabilitas penerimaan yang paling buruk dan paling sulit untuk disesuaikan dengan baik untuk masalah ini.
Perhatikan bahwa secara umum kami lebih suka proposal dengan ekor yang lebih gemuk, tapi itu topik lain.
Lihat:
The Artikel Wikipedia adalah membaca pelengkap yang baik. Seperti yang Anda lihat, Metropolis juga memiliki "rasio koreksi" tetapi, seperti yang disebutkan di atas, Hastings memperkenalkan modifikasi yang memungkinkan distribusi proposal yang tidak simetris.
Algoritma Metropolis diimplementasikan dalam paket R di
mcmc
bawah perintahmetrop()
.Contoh kode lainnya:
http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/metrop/
http://pcl.missouri.edu/jeff/node/322
http://darrenjw.wordpress.com/2010/08/15/metropolis-hastings-mcmc-algorithms/
sumber
dnorm(can,mu,sig)/dnorm(x,mu,sig)
dalam sampler independensi dari tautan pertama tidak sama dengan 1. Saya pikir seharusnya sama dengan 1 ketika menggunakan distribusi proposal simetris. Apakah ini karena itu adalah sampler independene dan bukan MH Non-Random-Walk biasa? Jika ya, berapa rasio Hastings untuk MH Non-Random-walk Plain?