Mungkin pertanyaan ini memiliki jawaban dalam pengobatan, tetapi apakah ada alasan statistik mengapa indeks BMI dihitung sebagai ? Mengapa tidak misalnya hanya ? Gagasan pertama saya adalah bahwa itu ada hubungannya dengan regresi kuadratik. berat / tinggi
Contoh data nyata (200 individu dengan berat, tinggi, usia, dan jenis kelamin):
structure(list(Age = c(18L, 21L, 17L, 20L, 19L, 53L, 27L, 22L,
19L, 27L, 19L, 20L, 19L, 20L, 42L, 17L, 23L, 20L, 20L, 19L, 20L,
19L, 19L, 18L, 19L, 15L, 19L, 15L, 19L, 21L, 60L, 19L, 17L, 23L,
60L, 33L, 24L, 19L, 19L, 22L, 20L, 21L, 19L, 19L, 20L, 18L, 19L,
20L, 22L, 20L, 20L, 27L, 19L, 22L, 19L, 20L, 20L, 21L, 16L, 19L,
41L, 54L, 18L, 23L, 19L, 19L, 22L, 18L, 20L, 19L, 25L, 18L, 20L,
15L, 61L, 19L, 34L, 15L, 19L, 16L, 19L, 18L, 15L, 20L, 20L, 20L,
20L, 19L, 16L, 37L, 37L, 18L, 20L, 16L, 20L, 36L, 18L, 19L, 19L,
20L, 18L, 17L, 22L, 17L, 22L, 16L, 24L, 17L, 33L, 17L, 17L, 15L,
18L, 18L, 16L, 20L, 29L, 24L, 18L, 17L, 18L, 36L, 16L, 17L, 20L,
16L, 43L, 19L, 18L, 20L, 19L, 18L, 21L, 19L, 20L, 23L, 19L, 19L,
20L, 24L, 19L, 20L, 38L, 18L, 17L, 19L, 19L, 20L, 20L, 21L, 20L,
20L, 42L, 17L, 20L, 25L, 20L, 21L, 21L, 22L, 19L, 25L, 19L, 40L,
25L, 52L, 25L, 21L, 20L, 41L, 34L, 24L, 30L, 21L, 27L, 47L, 21L,
16L, 31L, 21L, 37L, 20L, 22L, 19L, 20L, 25L, 23L, 20L, 20L, 21L,
36L, 19L, 21L, 16L, 20L, 18L, 21L, 21L, 18L, 19L), Height = c(180L,
175L, 178L, 160L, 172L, 172L, 180L, 165L, 160L, 187L, 165L, 176L,
164L, 155L, 166L, 167L, 171L, 158L, 170L, 182L, 182L, 175L, 197L,
170L, 165L, 176L, 167L, 170L, 168L, 163L, 155L, 152L, 158L, 165L,
180L, 187L, 177L, 170L, 178L, 170L, 170L, NA, 188L, 180L, 161L,
178L, 178L, 165L, 187L, 178L, 168L, 168L, 180L, 192L, 188L, 173L,
193L, 184L, 167L, 177L, 177L, 160L, 167L, 190L, 187L, 163L, 173L,
165L, 190L, 178L, 167L, 160L, 169L, 174L, 165L, 176L, 183L, 166L,
178L, 158L, 180L, 167L, 170L, 170L, 180L, 184L, 170L, 180L, 169L,
165L, 156L, 166L, 178L, 162L, 178L, 181L, 168L, 185L, 175L, 167L,
193L, 160L, 171L, 182L, 165L, 174L, 169L, 185L, 173L, 170L, 182L,
165L, 160L, 158L, 186L, 173L, 168L, 172L, 164L, 185L, 175L, 162L,
182L, 170L, 187L, 169L, 178L, 189L, 166L, 161L, 180L, 185L, 179L,
170L, 184L, 180L, 166L, 167L, 178L, 175L, 190L, 178L, 157L, 179L,
180L, 168L, 164L, 187L, 174L, 176L, 170L, 170L, 168L, 158L, 175L,
174L, 170L, 173L, 158L, 185L, 170L, 178L, 166L, 176L, 167L, 168L,
169L, 168L, 178L, 183L, 166L, 165L, 160L, 176L, 186L, 162L, 172L,
164L, 171L, 175L, 164L, 165L, 160L, 180L, 170L, 180L, 175L, 167L,
165L, 168L, 176L, 166L, 164L, 165L, 180L, 173L, 168L, 177L, 167L,
173L), Weight = c(60L, 63L, 70L, 46L, 60L, 68L, 80L, 68L, 55L,
89L, 55L, 63L, 60L, 44L, 62L, 57L, 59L, 50L, 60L, 65L, 63L, 72L,
96L, 50L, 55L, 53L, 54L, 49L, 72L, 49L, 75L, 47L, 57L, 70L, 105L,
85L, 80L, 55L, 67L, 60L, 70L, NA, 76L, 85L, 53L, 69L, 74L, 50L,
91L, 68L, 55L, 55L, 57L, 80L, 98L, 58L, 85L, 120L, 62L, 63L,
88L, 80L, 57L, 90L, 83L, 51L, 52L, 65L, 92L, 58L, 76L, 53L, 64L,
63L, 72L, 68L, 110L, 52L, 68L, 50L, 78L, 57L, 75L, 55L, 75L,
68L, 60L, 65L, 48L, 56L, 65L, 65L, 88L, 55L, 68L, 74L, 65L, 62L,
58L, 55L, 84L, 60L, 52L, 92L, 60L, 65L, 50L, 73L, 51L, 60L, 76L,
48L, 50L, 53L, 63L, 68L, 56L, 68L, 60L, 70L, 65L, 52L, 75L, 65L,
68L, 63L, 54L, 76L, 60L, 59L, 80L, 74L, 96L, 68L, 72L, 62L, 58L,
50L, 75L, 70L, 85L, 67L, 65L, 55L, 78L, 58L, 53L, 56L, 72L, 62L,
60L, 56L, 82L, 70L, 53L, 67L, 58L, 58L, 49L, 90L, 58L, 77L, 55L,
70L, 64L, 98L, 60L, 60L, 65L, 74L, 99L, 49L, 47L, 75L, 77L, 74L,
68L, 50L, 66L, 75L, 54L, 60L, 65L, 80L, 90L, 95L, 79L, 57L, 70L,
60L, 85L, 44L, 58L, 50L, 88L, 60L, 54L, 68L, 56L, 69L), Gender = c(1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 2L, 1L, 1L, 2L, 2L, 1L)), .Names = c("Age", "Height", "Weight",
"Gender"), row.names = 304:503, class = "data.frame")
biostatistics
Miroslav Sabo
sumber
sumber
library(MASS); rlm(log(Weight) ~ log(Height) + cut(Age, 3) + as.factor(Gender), data=y)
rlm(Weight ~ Height + cut(Age, 3) + as.factor(Gender), data=y)
y
Jawaban:
Ulasan ini, oleh Eknoyan (2007) memiliki jauh lebih banyak daripada yang mungkin ingin Anda ketahui tentang Quetelet dan penemuannya tentang indeks massa tubuh.
Versi singkatnya adalah bahwa BMI terlihat kira-kira terdistribusi normal, sementara berat badan saja, atau berat / tinggi tidak, dan Quetelet tertarik untuk menggambarkan seorang pria "normal" melalui distribusi normal. Ada beberapa argumen prinsip pertama juga, berdasarkan pada bagaimana orang tumbuh, dan beberapa pekerjaan yang lebih baru telah mencoba untuk menghubungkan penskalaan kembali ke beberapa biomekanik.
Perlu dicatat bahwa nilai BMI cukup diperdebatkan. Itu berkorelasi dengan lemak dengan cukup baik, tetapi cut-off untuk kekurangan berat badan / kelebihan berat badan / obesitas tidak cukup cocok dengan hasil perawatan kesehatan.
sumber
weight/height^3
yang akan ditafsirkan sebagai kepadatan (secara intuitif masuk akal), tetapi memilih BMI klasik karena distribusi normal seperti yang Anda katakan.Dari Adolphe Quetelet, "Sebuah Risalah tentang Manusia dan Pengembangan Fakultas-fakultasnya":
Lihat di sini .
Dia tidak tertarik dalam mengkarakterisasi obesitas tetapi hubungan antara berat dan tinggi karena dia sangat tertarik pada biometri dan kurva lonceng. Temuan Quetelet menunjukkan bahwa BMI memiliki distribusi yang mendekati normal dalam populasi. Ini menandakan kepadanya bahwa ia telah menemukan hubungan yang "benar". (Menariknya, hanya satu atau dua dekade kemudian Francis Galton akan mendekati masalah "distribusi ketinggian" dalam populasi dan menamai istilah "Regresi terhadap Mean").
Perlu dicatat bahwa BMI telah menjadi momok biometri di zaman modern karena pemanfaatan BMI yang dilakukan oleh Framingham sebagai cara mengidentifikasi obesitas. Masih ada sedikit prediktor yang baik untuk obesitas (dan hasil kesehatan terkaitnya). Rasio pengukuran pinggang ke pinggul adalah kandidat yang menjanjikan. Semoga saat USG menjadi lebih murah dan lebih baik, dokter akan menggunakannya untuk mengidentifikasi tidak hanya obesitas, tetapi juga timbunan lemak dan kalsifikasi dalam organ dan membuat rekomendasi perawatan berdasarkan itu.
sumber
BMI terutama digunakan saat ini karena kemampuannya untuk memperkirakan volume lemak visceral perut, berguna dalam mempelajari risiko kardiovaskular. Untuk studi kasus menganalisis kecukupan BMI dalam skrining untuk diabetes lihat Bab 15 dari http://biostat.mc.vanderbilt.edu/CourseBios330 di bawah Handout . Ada beberapa penilaian. Anda akan melihat bahwa kekuatan tinggi yang lebih baik lebih dekat ke 2,5 tetapi Anda bisa melakukan lebih baik daripada menggunakan tinggi dan berat.
sumber