Saya kira itu
benar, padahal
salah.
Namun, saya sudah mendapat "intuisi" tentang yang kemudian, yaitu, Anda mempertimbangkan probabilitas P (A | B) dengan membagi dua kasus (C atau Tidak C). Mengapa intuisi ini salah?
probability
bayesian
Zell
sumber
sumber
Jawaban:
Misalkan, sebagai contoh kontra mudah, bahwa probabilitasP(A) dari A adalah 1 , terlepas dari nilai C . Kemudian, jika kita mengambil persamaan yang salah , kita mendapatkan:
Itu jelas tidak bisa benar, mungkin tidak lebih dari . Ini membantu membangun intuisi bahwa Anda harus memberi bobot pada masing-masing dari dua kasus yang sebanding dengan seberapa besar kemungkinan kasus itu1
, yang menghasilkan persamaan pertama (benar)..Itu membawa Anda lebih dekat ke persamaan pertama Anda, tetapi bobotnya tidak sepenuhnya benar. Lihat komentar A. Rex untuk bobot yang benar.
sumber
Jawaban Dennis memiliki contoh yang bagus, membantah persamaan yang salah. Jawaban ini berusaha menjelaskan mengapa persamaan berikut ini benar:
Karena setiap istilah dikondisikan pada , kita dapat mengganti seluruh ruang probabilitas dengan B dan menjatuhkan istilah B. Ini memberi kita:B B B
Kemudian Anda bertanya mengapa persamaan ini memiliki istilah dan P ( ¬ C ) di dalamnya.P(C) P(¬C)
The reason is thatP(A|C)P(C) is the portion of A in C and P(A|¬C)P(¬C) is the portion of A in ¬C and the two add up to A . See diagram. On the other hand P(A|C) is the proportion of C containing A and adalah proporsi ¬ C yang mengandung A - ini adalah proporsi daerah yang berbeda sehingga mereka tidak memiliki penyebut yang sama sehingga menambahkannya tidak ada artinya.P(A|¬C) ¬C A
sumber
I know you've already received two great answers to your question, but I just wanted to point out how you can turn the idea behind your intuition into the correct equation.
First, remember thatP(X∣Y)=P(X∩Y)P(Y) and equivalently P(X∩Y)=P(X∣Y)P(Y) .
To avoid making mistakes, we will use the first equation in the previous paragraph to eliminate all conditional probabilities, then keep rewriting expressions involving intersections and unions of events, then use the second equation in the previous paragraph to re-introduce the conditionals at the end. Thus, we start with:
We will keep rewriting the right-hand side until we get the desired equation.
The casework in your intuition expands the eventA into (A∩C)∪(A∩¬C) , resulting in
As with sets, the intersection distributes over the union:
Since the two events being unioned in the numerator are mutually exclusive (sinceC and ¬C cannot both happen), we can use the sum rule:
We now see thatP(A∣B)=P(A∩C∣B)+P(A∩¬C∣B) ; thus, you can use the sum rule on the event on the event of interest (the "left" side of the conditional bar) if you keep the given event (the "right" side) the same. This can be used as a general rule for other equality proofs as well.
We re-introduce the desired conditionals using the second equation in the second paragraph:
We plug this into our equation forP(A∣B) as:
Noting thatP(B∩C)P(B)=P(C∣B) (and similarly for ¬C ), we finally get
Which is the correct equation (albeit with slightly different notation), including the fix A. Rex pointed out.
Note thatP(A∩C∣B) turned into P(A∣B∩C)P(C∣B) . This mirrors the equation P(A∩C)=P(A∣C)P(C) by adding the B condition to not only P(A∩C) and P(A∣C) , but also P(C) as well. I think if you are to use familiar rules on conditioned probabilities, you need to add the condition to all probabilities in the rule. And if there's any doubt whether that idea works for a particular situation, you can always expand out the conditionals to check, as I did for this answer.
sumber
Probabilities are ratios; the probability of A given B is how often A happens within the space of B. For instance,P(rain|March) is the number of rainy days in March divided by the number of total days in March. When dealing with fractions, it makes sense to split up numerators. For instance,
This of course assumes that "snow" and "rain" are mutually exclusive. It does not, however, make sense to split up denominators. So if you haveP(rain|February or March) ,
that is equal to
But that is not equal to
If you're having trouble seeing that, you can try out some numbers. Suppose there are 10 rainy days in February and 8 in March. Then we have
and
The first number, 29.5%, is the average of 35.7% and 25.8% (with the second number weighted slightly more because there is are more days in March). When you sayP(A|B)=P(A|B,C)+P(A|B,¬C) you're saying that x1+x2y1+y2=x1y1+x2y2 , which is false.
sumber
If I go to Spain, I can get sunburnt.
sumber