Apa cara termudah untuk melihat bahwa pernyataan berikut ini benar?
Misalkan . Perlihatkan .
Dengan , ini berarti bahwa .
Mudah untuk melihat . Selain itu, kami juga memiliki bawah parametrization
Solusi yang diberikan Jawaban Xi'an : Menggunakan notasi dalam pertanyaan asli: Dari ini, kita dapat1) .
self-study
distributions
exponential
order-statistics
jacobian
Klarinetis
sumber
sumber
Jawaban:
Buktinya diberikan di Bunda Semua Buku Generasi Acak, Generasi Acak Non-seragam Non-seragam Devroye , di hal.211 (dan ini sangat elegan!):
Bukti. Karena kepadatan gabungan dari statistik urutan(E(1),...
An alternative suggested to me by Gérard Letac is to check that
sumber
I lay out here what has been suggested in comments by @jbowman.
Let a constanta≥0 . Let Yi follow an Exp(1) and consider Zi=Yi−a . Then
which is the distribution function ofExp(1) .
Let's describe this: the probability that anExp(1) r.v. will fall in a specific interval (the numerator in the last line), given that it will exceed the interval's lower bound (the denominator), depends only on the length of the interval and not on where this interval is placed on the real line. This is an incarnation of the "memorylessness" property of the Exponential distribution, here in a more general setting, free of time-interpretations (and it holds for the Exponential distribution in general)
Now, by conditioning on{Yi≥a} we force Zi to be non-negative, and crucially, the obtained result holds ∀a∈R+ . So we can state the following:
IfYi∼Exp(1) , then ∀Q≥0:Zi=Yi−Q≥0 ⟹ Zi∼Exp(1) .
Can we find aQ≥0 that is free to take all non-negative real values and for which the required inequality always holds (almost surely)? If we can, then we can dispense with the conditioning argument.
And indeed we can. It is the minimum-order statistic,Q=Y(1) , Pr(Yi≥Y(1))=1 . So we have obtained
This means that
So if the probabilistic structure ofYi remains unchanged if we subtract the minimum order statistic, it follows that the random variables Zi=Yi−Y(1) and Zj=Yj−Y(1) where Yi,Yj independent, are also independent since the possible link between them, Y(1) does not have an effect on the probabilistic structure.
Then the sum∑ni=1(Yi−Y(1)) contains n−1 Exp(1) i.i.d. random variables (and a zero), and so
sumber