Saya menjalankan tes root unit berikut (Dickey-Fuller) pada serangkaian waktu menggunakan ur.df()
fungsi dalam urca
paket.
Perintahnya adalah:
summary(ur.df(d.Aus, type = "drift", 6))
Outputnya adalah:
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression drift
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.266372 -0.036882 -0.002716 0.036644 0.230738
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.001114 0.003238 0.344 0.73089
z.lag.1 -0.010656 0.006080 -1.753 0.08031 .
z.diff.lag1 0.071471 0.044908 1.592 0.11214
z.diff.lag2 0.086806 0.044714 1.941 0.05279 .
z.diff.lag3 0.029537 0.044781 0.660 0.50983
z.diff.lag4 0.056348 0.044792 1.258 0.20899
z.diff.lag5 0.119487 0.044949 2.658 0.00811 **
z.diff.lag6 -0.082519 0.045237 -1.824 0.06874 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06636 on 491 degrees of freedom
Multiple R-squared: 0.04211, Adjusted R-squared: 0.02845
F-statistic: 3.083 on 7 and 491 DF, p-value: 0.003445
Value of test-statistic is: -1.7525 1.6091
Critical values for test statistics:
1pct 5pct 10pct
tau2 -3.43 -2.86 -2.57
phi1 6.43 4.59 3.78
Apa arti kode signifikansi (kode Signifikan) artinya? Saya perhatikan bahwa beberapa di antaranya dituliskan pada: z.lag.1, z.diff.lag.2, z.diff.lag.3 (kode signifikansi ".") Dan z.diff.lag.5 (the " ** "kode signifikansi).
Output memberi saya dua (2) nilai statistik uji: -1.7525 dan 1.6091. Saya tahu bahwa statistik tes ADF adalah yang pertama (yaitu -1.7525). Lalu apa yang kedua?
Akhirnya, untuk menguji hipotesis untuk root unit pada tingkat signifikansi 95%, saya perlu membandingkan statistik uji ADF saya (yaitu -1,7525) dengan nilai kritis, yang biasanya saya dapatkan dari tabel. Output di sini tampaknya memberi saya nilai kritis. Namun, pertanyaannya adalah: nilai kritis mana antara "tau2" dan "phi1" yang harus saya gunakan.
Terima kasih atas tanggapan Anda.
sumber
Jawaban:
Tampaknya pencipta perintah R khusus ini menganggap seseorang akrab dengan formula Dickey-Fuller asli, jadi tidak memberikan dokumentasi yang relevan untuk bagaimana menafsirkan nilai-nilai. Saya menemukan bahwa Enders adalah sumber yang sangat membantu (Applied Econometric Time Series 3e, 2010, hlm. 206-209 - Saya membayangkan edisi lain juga baik-baik saja). Di bawah ini saya akan menggunakan data dari paket URCA, pendapatan riil di Denmark sebagai contoh.
Mungkin bermanfaat untuk menggambarkan 3 formula berbeda yang digunakan Dickey-Fuller untuk mendapatkan hipotesis yang berbeda, karena ini cocok dengan opsi "type" ur.df. Enders menetapkan bahwa dalam ketiga kasus ini, istilah konsisten yang digunakan adalah gamma, koefisien untuk nilai y sebelumnya, istilah lag. Jika gamma = 0, maka ada unit root (random walk, nonstationary). Di mana hipotesis nol adalah gamma = 0, jika p <0,05, maka kami menolak nol (pada tingkat 95%), dan menganggap tidak ada unit root. Jika kami gagal menolak nol (p> 0,05) maka kami menganggap unit root ada. Dari sini, kita dapat melanjutkan untuk menafsirkan tau dan phi.
1) type = "none": (rumus dari Enders hal. 208)Δ y( t ) = γ∗ y( t - 1 ) + e ( t )
(di mana adalah istilah kesalahan, dianggap sebagai white noise; dari ; mengacu pada yang sebelumnya nilai y, begitu juga dengan istilah lag)e ( t ) γ= a - 1 y= a ∗ y( t - 1 ) + e ( t ) y( t - 1 )
Untuk tipe = "tidak ada," tau (atau tau1 dalam output R) adalah hipotesis nol untuk gamma = 0. Dengan menggunakan contoh pendapatan Denmark, saya mendapatkan "Nilai statistik uji adalah 0,7944" dan "Nilai kritis untuk statistik uji adalah : tau1 -2.6 -1.95 -1.61. Mengingat bahwa statistik uji ada di dalam semua 3 wilayah (1%, 5%, 10%) di mana kita gagal menolak nol, kita harus menganggap data adalah jalan acak, yaitu bahwa akar unit hadir. Dalam kasus ini, tau1 merujuk pada hipotesis gamma = 0. "z.lag1" adalah istilah gamma, koefisien untuk istilah lag (y (t-1)), yang merupakan p = 0,431, yang kami gagal tolak sebagai signifikan, hanya menyiratkan bahwa gamma tidak signifikan secara statistik untuk model ini. Berikut adalah output dari R
2) type = "drift" (pertanyaan spesifik Anda di atas):: (rumus dari Enders hal. 208)Δ y( t ) = a 0 + γ∗ y( t - 1 ) + e ( t )
Istilah phi1 mengacu pada hipotesis kedua, yang merupakan hipotesis nol gabungan dari a0 = gamma = 0. Ini berarti bahwa KEDUA nilai-nilai tersebut diuji menjadi 0 pada saat yang sama. Jika p <0,05, kami menolak nol, dan menganggap bahwa SETIDAKNYA salah satu dari ini adalah salah - yaitu satu atau kedua istilah a0 atau gamma bukan 0. Gagal menolak nol ini menyiratkan bahwa KEDUA a0 DAN gamma = 0, menyiratkan 1) bahwa gamma = 0 oleh karena itu unit root hadir, DAN 2) a0 = 0, jadi tidak ada istilah penyimpangan. Ini adalah output R.
(di mana a2 (t) adalah istilah tren waktu) Hipotesis (dari Enders hal. 208) adalah sebagai berikut: tau: gamma = 0 phi3: gamma = a2 = 0 phi2: a0 = gamma = a2 = 0 Ini mirip dengan output R. Dalam kasus ini, statistik uji adalah -2,4216 2,1927 2,9343 Dalam semua kasus ini, ini termasuk dalam zona "gagal menolak nol" (lihat nilai kritis di bawah). Apa tau3 menyiratkan, seperti di atas, adalah bahwa kita gagal menolak nol dari unit root, menyiratkan unit root hadir. Gagal menolak phi3 menyiratkan dua hal: 1) gamma = 0 (unit root) DAN 2) tidak ada istilah tren waktu, yaitu, a2 = 0. Jika kita menolak nol ini, itu akan menyiratkan bahwa satu atau kedua istilah ini bukan 0. Gagal menolak phi2 menyiratkan 3 hal: 1) gamma = 0 DAN 2) tidak ada istilah tren waktu DAN 3) tidak ada istilah drift, yaitu gamma itu = 0, a0 = 0, dan a2 = 0.
Ini adalah output R.
Dalam contoh spesifik Anda di atas, untuk data d.Aus, karena kedua statistik uji berada di dalam zona "gagal untuk menolak", itu menyiratkan bahwa gamma = 0 DAN a0 = 0, yang berarti bahwa ada unit root, tetapi tidak ada istilah drift.
sumber
Seperti yang ditunjukkan bersama-p, kode signifikansi cukup standar dan mereka sesuai dengan nilai-p, yaitu signifikansi statistik dari uji hipotesis. p-value 0,01 berarti kesimpulan tersebut benar dalam kepercayaan 99%.
Artikel Wikipedia tentang Dickey-Fuller menjelaskan tiga versi tes Dickey-Fuller: "unit root", "unit root dengan drift", dan "unit root dengan drift dan tren waktu deterministik", atau apa yang disebut dalam
urca
dokumentasi sebagai tipe = "tidak ada", "melayang", dan "tren", masing-masing.Masing-masing tes ini adalah regresi linier yang semakin kompleks. Di semuanya ada root, tetapi di drift juga ada koefisien drift, dan di trend juga ada koefisien tren. Masing-masing koefisien ini memiliki tingkat signifikansi terkait. Sementara signifikansi dari koefisien akar adalah yang paling penting dan fokus utama dari uji DF, kami mungkin juga tertarik untuk mengetahui apakah tren / drift juga signifikan secara statistik. Setelah bermain-main dengan berbagai mode dan melihat koefisien mana yang muncul / hilang dalam uji-t, saya dapat dengan mudah mengidentifikasi koefisien mana yang sesuai dengan uji-t mana.
Mereka dapat ditulis sebagai berikut (dari halaman wiki):
sumber
Info lebih lanjut dalam catatan kuliah Roger Perman tentang tes unit root
Lihat juga tabel 4.2 dalam Enders, Applied Econometric Time Series (4e), yang merangkum berbagai hipotesis yang dirujuk oleh statistik uji ini. Konten setuju dengan gambar yang disediakan di atas.
sumber
Saya menemukan jawaban Jeramy cukup mudah untuk diikuti, tetapi terus-menerus menemukan diri saya mencoba untuk berjalan melalui logika dengan benar dan membuat kesalahan. Saya membuat kode fungsi R yang menginterpretasikan masing-masing dari ketiga jenis model, dan memberikan peringatan jika ada hasil yang tidak konsisten atau tidak meyakinkan (saya tidak berpikir akan ada inkonsistensi jika saya memahami matematika ADF dengan benar, tetapi saya pikir masih bagus) periksa apakah fungsi ur.df memiliki cacat).
Silakan lihat. Senang menerima komentar / koreksi / peningkatan.
https://gist.github.com/hankroark/968fc28b767f1e43b5a33b151b771bf9
sumber
posting dan jawaban yang sangat menarik. Saya hanya memiliki keraguan sehubungan dengan tabel yang dijelaskan oleh user3096626. Perangkat lunak mana yang dilaporkan dalam tes ADF yang menghasilkan nilai
\tau_{\alpha \mu}
,\tau_{\alpha \tau}
dan\tau_{\beta \tau}
? Jelas, R tidaksumber
phi1 phi2 phi3 setara dengan F-tes dalam kerangka ADF
sumber