Saya punya contoh yang berhasil (dalam R), yang saya coba mengerti lebih lanjut. Saya menggunakan Limma untuk membuat model linier dan saya mencoba memahami apa yang terjadi langkah demi langkah dalam perhitungan perubahan lipat. Saya kebanyakan berusaha mencari tahu apa yang terjadi untuk menghitung koefisien. Dari apa yang saya tahu, dekomposisi QR digunakan untuk mendapatkan koefisien, jadi saya pada dasarnya mencari penjelasan atau cara untuk melihat langkah-demi-langkah persamaan yang sedang dihitung, atau atau kode sumber untuk qr () di R untuk melacaknya sendiri.
Menggunakan Data berikut:
expression_data <- c(1.27135202935009, 1.41816160331787, 1.2572772420417, 1.70943398046296, 1.30290218641586, 0.632660015122616, 1.73084258791384, 0.863826352944684, 0.62481665344628, 0.356064235030147, 1.31542028558644, 0.30549909383238, 0.464963176430548, 0.132181421105667, -0.284799809563931, 0.216198538884642, -0.0841133304341238, -0.00184472290008803, -0.0924271878885008, -0.340291804468472, -0.236829711453303, 0.0529690806587626, 0.16321956624511, -0.310513510587778, -0.12970035111176, -0.126398635780533, 0.152550803185228, -0.458542514769473, 0.00243517688116406, -0.0190192219685527, 0.199329876859774, 0.0493831375210439, -0.30903829000185, -0.289604319193543, -0.110019942085281, -0.220289950537685, 0.0680403723818882, -0.210977291862137, 0.253649629045288, 0.0740109953273042, 0.115109148186167, 0.187043445057404, 0.705155251555554, 0.105479342752451, 0.344672919872447, 0.303316487542805, 0.332595721664644, 0.0512213943473417, 0.440756755046719, 0.091642538588249, 0.477236022595909, 0.109140019847968, 0.685001267317616, 0.183154080053337, 0.314190891668279, -0.123285017407119, 0.603094973500324, 1.53723917249845, 0.180518835745199, 1.5520102749957, -0.339656677699664, 0.888791974821514, 0.321402618155527, 1.31133008668306, 0.287587853884556, -0.513896569786498, 1.01400498573403, -0.145552182640197, -0.0466811491949621, 1.34418631328095, -0.188666887863983, 0.920227741574566, -0.0182196762358299, 1.18398082848213, 0.0680539755381465, 0.389472802053599, 1.14920099633956, 1.35363045061024, -0.0400907708395635, 1.14405154287124, 0.365672853509181, -0.0742688460368051, 1.60927415300638, -0.0312210890874907, -0.302097025523754, 0.214897201115632, 2.029775196118, 1.46210810601113, -0.126836819148653, -0.0799005522761045, 0.958505775644153, -0.209758749029421, 0.273568395649965, 0.488150388217536, -0.230312627718208, -0.0115780974342431, 0.351708198671371, 0.11803520077305, -0.201488605868396, 0.0814169684941098, 1.32266103732873, 1.9077004570343, 1.34748531668521, 1.37847539147601, 1.85761827653095, 1.11327229058024, 1.21377936983249, 1.167867701785, 1.3119314966728, 1.01502530573911, 1.22109375841952, 1.23026951795161, 1.30638557237133, 1.02569437924906, 0.812852833149196)
treatment <- c('A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'A', 'B', 'A', 'C', 'A', 'C', 'A', 'B', 'C', 'B', 'C', 'C', 'A', 'C', 'A', 'B', 'A', 'C', 'B', 'B', 'A', 'C', 'A', 'C', 'C', 'A', 'C', 'B', 'C', 'A', 'A', 'B', 'C', 'A', 'C', 'B', 'B', 'C', 'C', 'B', 'B', 'C', 'C', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A')
variation <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)
... dan desain model berikut
design <- model.matrix(~0 + factor(treatment,
levels=unique(treatment)) +
factor(variation))
colnames(design) <- c(unique(treatment),
paste0("b",
unique(variation)[-1]))
#expression_data consists of more than the data given. The data given is just one row from the object
fit <- lmFit((expression_data), design)
cont_mat <- makeContrasts(B-A,
levels=design)
fit2 <- contrasts.fit(fit,
contrasts=cont_mat)
fit2 <- eBayes(fit2)
Memberi saya perubahan lipat -0.8709646.
Mendapatkan koefisien dapat dilakukan melalui:
qr.solve(design, expression_data)
Maka itu adalah kasus sederhana dari BA untuk mendapatkan perubahan lipatan.
Sekarang sedikit yang membingungkan saya adalah bagaimana qr.solve
sebenarnya bekerja, itu disebutqr
fungsi, tetapi saya tidak bisa menemukan sumber untuk itu.
Apakah ada yang punya penjelasan yang bagus tentang dekomposisi qr, atau cara bagi saya untuk melacak dengan tepat apa yang terjadi untuk mendapatkan koefisien?
Terima kasih atas bantuannya!
sumber
Jawaban:
Gagasan dekomposisi QR sebagai prosedur untuk mendapatkan estimasi OLS sudah dijelaskan di pos yang ditautkan oleh @MatthewDrury.
Kode sumber fungsi
qr
ditulis dalam Fortran dan mungkin sulit untuk diikuti. Di sini saya menunjukkan implementasi minimal yang mereproduksi hasil utama untuk model yang dipasang oleh OLS. Semoga langkah-langkahnya lebih mudah diikuti.Kami dapat memeriksa bahwa perkiraan yang sama dari
lm
yang diperoleh.Sisa dapat diperoleh sebagai
y - X %*% res$beta
.Referensi
DSG Pollock (1999) Buku pegangan analisis deret waktu, pemrosesan sinyal dan dinamika , Academic Press.
sumber
QR.regression
fungsi panggilan daripadaQR.Householder
. Selain itu saya tidak bisa cukup berterima kasih atas penjelasan yang begitu mendalam.