Simulasi Hamiltonian adalah BQP-complete

14

Banyak makalah menyatakan bahwa simulasi Hamiltonian adalah BQP-lengkap (misalnya, simulasi Hamiltonian dengan ketergantungan hampir optimal pada semua parameter dan Simulasi Hamiltonian oleh Qubitisasi ).

Sangat mudah untuk melihat bahwa simulasi Hamiltonian adalah BQP-keras karena setiap algoritma kuantum dapat direduksi menjadi simulasi Hamiltonian, tetapi bagaimana simulasi Hamiltonian dalam BQP?

yaitu, apa tepatnya masalah keputusan simulasi Hamiltonian dalam BQP dan dalam kondisi apa Hamiltonian?

groupsgroupsgroup
sumber

Jawaban:

14

Ada banyak varian berbeda, terutama yang berkaitan dengan kondisi pada Hamiltonian. Ini sedikit permainan, misalnya, untuk mencoba dan menemukan kelas Hamiltonian yang paling sederhana yang simulasi masih lengkap BQP.

Pernyataan ini kira-kira akan berada di baris: let menjadi (dinormalisasi) negara produk, H menjadi Hamiltonian dari beberapa kelas tertentu (misalnya hanya dari kopling tetangga terdekat-yang terdiri atas kisi satu dimensi), O merupakan diamati terdiri produk tensor dari operator satu-tubuh sehingga O1 , dan t menjadi waktu. Mengingat janji bahwa ψ | e i H t O e - i H t | ψ lebih besar dari|ψHO^O^1tψ|eiHtO^eiHt|ψatau kurang dari112+auntuk beberapaa(misalnyaa=112aaa=16 ), putuskan mana yang menjadi masalah.


Keterangan lebih lanjut

Simulasi Hamiltonian adalah BQP-keras

Konstruksi dasar (awalnya karena Feynman, di sini sedikit di-tweak) pada dasarnya menunjukkan bagaimana Anda bisa mendesain Hamiltonian yang mengimplementasikan komputasi kuantum apa pun, termasuk komputasi lengkap BQP apa pun. Yang bisa Anda amati hanya Z pada qubit output tertentu, dua hasil pengukuran yang sesuai dengan 'ya' dan 'tidak'.

Jenis yang paling sederhana dari Hamiltonian Anda mungkin berpikir adalah untuk mempertimbangkan perhitungan unitaries berurutan U n bertindak atas M qubit, mulai dari negara | 0 M . Kemudian Anda dapat memperkenalkan qubit N tambahan , dan tentukan Hamiltonian H =N1UnM|0MN

H=2Nn=1N1n(Nn)(|1001|n,n+1U+|0110|n,n+1U).
|1|0(N1)|0MNπ/4|0(N1)|1|Φ|Φn(Nn)

|ψn=|0(n1)|1|0Nn(Un1Un2U1|0M).
The action of the Hamiltonian is then
H|ψn=2N(n1)(N+1n)|ψn1+2Nn(Nn)|ψn+1,
which proves that the evolution is restricted to an N×N subspace which is represented by a tridiagonal matrix (which is the specific thing studied in perfect state transfer).

Of course, this Hamiltonian doesn't have any particularly nice properties - it is highly non-local, for example. There are many tricks that can be played to simplify the Hamiltonian to being, for example, one-dimensional. It can even be translationally invariant if you want, at the cost of having to prepare a more complex initial product state (at that point, the computation is no longer encoded in the Hamiltonian, which is universal, but is encoded in the input state). See here, for example.

Hamiltonian Simulation

The evolution of any Hamiltonian which is local on some lattice, acting on an initial product state, for a time that is no more than polynomial in the system size, can be simulated by a quantum computer, and any efficiently implementable measurement can be applied to estimate an observable. In this sense, you can see that Hamiltonian simulation is no harder than a quantum computation, the counter-point to the previous statement that quantum computation is no harder than Hamiltonian simulation.

There are many ways to do this (and there have been some recent papers that show significant improvements in error scaling for certain classes of Hamiltonian). Hre's quite a simple one. Take the Hamiltonian H that you want to simulate. Split it up into different parts, Hi, each of which commutes. For example, on a nearest-neighbour Hamiltonian on some graph, you don't need more pieces than the maximum degree of the graph. You then Trotterize the evolution, writing the approximation

eiHt(eiH1δteiH2δteiHnδt)t/δt
So, you just have to construct a circuit that implements terms like eiH1δt, which is composed of commuting terms H1=nhn, each of which acts only on a small number of qubits.
eiH1δt=neihnδt
Since this is just a unitary on a small number of terms, a universal quantum computer can implement it.
DaftWullie
sumber