Apa kerumitan masalah grafik ini?

16

Diberi graf sederhana yang tidak terarah , temukan subset A ices dari simpul, sedemikian rupa sehinggaGSEBUAH

  1. untuk setiap titik setidaknya setengah dari tetangga x juga dalam A , danxSEBUAHxSEBUAH

  2. ukuran adalah minimum.SEBUAH

Yaitu, kami sedang mencari sebuah cluster, di mana setidaknya setengah dari lingkungan setiap vertex internal tetap internal. Keberadaan kluster semacam itu sudah jelas, karena seluruh himpunan simpul selalu memiliki properti 1. Tetapi seberapa sulitkah untuk menemukan kluster terkecil (yang tidak kosong)?V(G)

Apakah ada nama standar untuk masalah ini? Apa yang diketahui tentang kerumitannya?

Andras Farago
sumber
2
Tampaknya merupakan varian dari masalah Pemisahan yang Memuaskan . Saya tidak tahu apakah varian Anda diketahui dan telah terbukti sebagai NPC; tetapi mungkin pengurangan dari k-klik harus berfungsi: tautkan setiap node dari grafik asli ke k + 1 node dari C i "klik eksternal" ukuran 2 ( k + 1 ) (setiap node memiliki klik eksternal). Kemudian Anda dapat menemukan himpunan nontrivial A dengan ukuran k jika dan hanya jika kvsayak+1Csaya2(k+1)Akk-clique ada di grafik asli (Anda harus memilih setidaknya satu simpul, tetapi Anda harus menghindari klik eksternal). Tapi itu hanya ide; jika saya punya cukup waktu saya akan mencoba melihat apakah pengurangannya sudah benar.
Marzio De Biasi
@MarzioDeBiasi Terima kasih, setelah beberapa pencarian saya menemukan bahwa Masalah Partisi Memuaskan memang terkait. Namun, di setiap varian yang bisa saya temukan, mereka mencari partisi, bukan untuk satu set. Tidak jelas, bagaimana mereka terkait. Dalam pengurangan Anda, kecuali jika saya salah mengerti sesuatu, -clique dari grafik asli tidak memenuhi definisi, karena setiap node di dalamnya akan memiliki k - 1 tetangga internal, tetapi setidaknya k + 1 tetangga eksternal, karena penambahan eksternal klik-klik. kk1k+1
Andras Farago
2
Saya pikir masalah ini dikenal sebagai "aliansi defensif"
daniello
1
@daniello: hebat, saya mencari di survei IG Yero, JA Rodriguez-Velazquez, "aliansi defensif dalam grafik: survei", 2013 tetapi tidak menemukan kata "setengah"; ketika saya punya cukup waktu saya akan membacanya dengan cermat; kemungkinan masalah OP sudah diketahui!
Marzio De Biasi
2
Tampaknya dirumuskan sebagai "setiap simpul memiliki setidaknya tetangga di dalam sebanyak di luar" yang sama seperti dalam pertanyaan hingga pembulatan, dan mungkin termasuk / tidak termasuk simpul itu sendiri dalam hitungan
daniello

Jawaban:

6

Ini adalah pengurangan dari Klik untuk masalah Anda.

Kita mulai dengan sebuah contoh dari Clique: grafik dan sebuah integer k , biarkan V = { v 1 , v 2 , . . . , v n } .GkV={v1,v2,...,vn}

Klik tetap menjadi NPC bahkan di bawah batasan bahwa (sketsa bukti: jika m a x ( d e g ( v i ) > 2 ( k - 1 ) kemudian tambahkan K t di mana t = 2 ( k - 1 ) - m a xmax(deg(vi))2(k1)max(deg(vi)>2(k1)Kt k + t dalam grafik baru). dan hubungkan ke semua node G dan minta klik ukuran k =t=2(k1)max(deg(vi))Gk=k+t

Jadi kita mengasumsikan bahwa dalam , m a x ( d e g ( v i ) ) 2 ( k - 1 ) . Untuk setiap simpul v i yang d e g ( v i ) < 2 ( k - 1 ) kita buat klik "eksternal" C i dari ukuran 2 ( k + 1 ) + 1 (setiap simpul CGmax(deg(vi))2(k1)videg(vi)<2(k1)Ci2(k+1)+1 clique memiliki setidaknya 2Ci tetangga).2(k+1)

Jika adalah derajat dari v i , kita menghubungkan v i ke 2 ( k - 1 ) - d e g ( v i ) node C i .deg(vi)vivi2(k1)deg(vi)Ci

Dalam dihasilkan , setiap v i memiliki derajat 2 ( k - 1 ) ; jadi | A | k karena setidaknya satu simpul harus dipilih.Gvi2(k1)|A|k

Jelas bahwa jika salah satu dari simpul termasuk dalam A maka setidaknya 2 ( k + 1 ) / 2 = k + 1 node juga harus dimasukkan di dalamnya. Perhatikan bahwa jika node asli memiliki d e g ( v i ) < k - 1 maka setidaknya satu simpul dari terkait C i harus disertakan, yang mengarah ke | A | > k .CiA2(k+1)/2=k+1deg(vi)<k1Ci|A|>k

Jadi kita bisa membangun satu set dari ukuran minimum | A | = k jika dan hanya jika GA|A|=kG berisi klik ukuran .k

Contoh pengurangan di mana kita bertanya apakah grafik diwakili oleh simpul kuning dan tepi tebal berisi klik ukuran k = 3 (a segitiga).Gk=3

varian masalah memuaskan 30CC0991E0BCCCD16E41CBD9CD3EEECC

Node biru (dikelompokkan untuk keterbacaan yang lebih baik) adalah , tepi merah adalah hubungan antara node G dengan d e g ( v i ) < 2 ( k - 1 ) .K9Gdeg(vi)<2(k1)

Marzio De Biasi
sumber
@ WillardZhan: karena setiap simpul memiliki derajat 2 ( k - 1 ) oleh konstruksi, jadi jika A mengandung satu simpul, itu harus mengandung setidaknya 2 ( k - 1 ) / 2 = k - 1 tetangga (dan sama berlaku untuk semua simpul A ), jadi | A | k . "Ukuran minimum" k dapat dicapai hanya jika A adalah klik ukuran k . G2(k1)A2(k1)/2=k1A|A|kkAk
Marzio De Biasi
@ WillardZhan: Saya menambahkan kondisi lain ke masalah klik awal (tetapi harus tetap NPC) ... Saya masih memeriksanya (tidak secara keseluruhan yakin itu benar).
Marzio De Biasi
1
kt
@ WillardZhan: Saya pikir itu benar, karena dalam paragraf itu saya merujuk pada pengurangan dari Clique [contoh (G,k)] untuk klik Clique + mSebuahx(deg(vsaya))2(k-1) [contoh (G,k)] t adalah jumlah dari node (klik) untuk ditambahkan ke G untuk mendapatkan contoh baru dari Clique yang menambah kendala.
Marzio De Biasi