Bagaimana memahami SR Latch

10

Saya tidak bisa membungkus kepala saya di sekitar bagaimana SR Latch bekerja. Tampaknya, Anda menyambungkan saluran input dari R, dan lainnya dari S, dan Anda seharusnya mendapatkan hasil di dan .QQ

Namun, baik R dan S membutuhkan input dari output yang lain, dan output yang lain membutuhkan input dari output yang lain. Apa yang lebih dulu ayam atau telur ??

Saat Anda pertama kali memasang sirkuit ini, bagaimana cara memulainya?

SR Latch

CodyBugstein
sumber
buku yang sedang Anda baca? Buku karya Morris Mano menjelaskan ini dengan lebih baik. Saya sarankan Anda untuk melihatnya.
avi
Untuk pemahaman yang lebih baik tentang SR Latch secara menyeluruh dan bagaimana perilakunya untuk input yang berbeda seperti 00, 01, 10 dan 11 lihat video ini. www.youtube.com/watch?v=VtVIDgilwlA
Perhatikan repost ini tentang Teknik Elektro yang juga menarik jawaban (baik).
Raphael
cara lain untuk memvisualisasikan / memahami ini adalah sebagai umpan balik di mana keadaan sebelumnya dipaksa ke keadaan baru. dengan kata lain itu berfungsi tidak peduli apa status umpan balik sebelumnya. ini dapat dikerjakan berdasarkan kasus per kasus seperti pada jawabannya.
vzn

Jawaban:

7

Flip-flop diimplementasikan sebagai multivibrator bi-stable; oleh karena itu, Q dan Q 'dijamin menjadi kebalikan satu sama lain kecuali ketika S = 1, R = 1, yang tidak diperbolehkan. Tabel eksitasi untuk SR flip-flop sangat membantu dalam memahami apa yang terjadi ketika sinyal diterapkan pada input.

S R  Q(t) Q(t+1)   
----------------
0 x   0     0       
1 0   0     1   
0 1   1     0   
x 0   1     1   

Output Q dan Q 'akan dengan cepat mengubah status dan berhenti pada kondisi stabil setelah sinyal diterapkan ke S dan R.

Example 1: Q(t) = 0, Q'(t) = 1, S = 0, R = 0. 

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(0 OR 1) = 0
         Q'(t+1 state 1) = NOT(S OR Q(t)) =  NOT(0 OR 0) = 1

State 2: Q(t+1 state 1)  = NOT(R OR Q'(t+1 state 1)) = NOT(0 OR 1) = 0
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  =  NOT(0 OR 0) = 1     

Since the outputs did not change, we have reached a steady state; therefore, Q(t+1) = 0, Q'(t+1) = 1.


Example 2: Q(t) = 0, Q'(t) = 1, S = 0, R = 1

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(1 OR 1) = 0
         Q'(t+1 state 1) = NOT(S OR Q(t))  = NOT(0 OR 0) = 1


State 2: Q(t+1 state 2)  = NOT(R OR Q'(t+1 state 1)) = NOT(1 OR 1) = 0
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  =  NOT(0 OR 0) = 1     


We have reached a steady state; therefore, Q(t+1) = 0, Q'(t+1) = 1.


Example 3: Q(t) = 0, Q'(t) = 1, S = 1, R = 0

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(0 OR 1) = 0
         Q'(t+1 state 1) = NOT(S OR Q(t)) =  NOT(1 OR 0) = 0

State 2: Q(t+1 state 2)  = NOT(R OR Q'(t+1 state 1)) = NOT(0 OR 0) = 1
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  = NOT(1 OR 0) = 0     

State 3: Q(t+1 state 3)  = NOT(R OR Q'(t+1 state 2)) = NOT(0 OR 0) = 1
         Q'(t+1 state 3) = NOT(S OR Q(t+1 state 2))  = NOT(1 OR 1) = 0     

We have reached a steady state; therefore, Q(t+1) = 1, Q'(t+1) = 0.


Example 4: Q(t) = 1, Q'(t) = 0, S = 1, R = 0

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(0 OR 0) = 1
         Q'(t+1 state 1) = NOT(S OR Q(t)) =  NOT(1 OR 1) = 0

State 2: Q(t+1 state 2)  = NOT(R OR Q'(t+1 state 1)) = NOT(0 OR 0) = 1
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  = NOT(1 OR 1) = 0     

We have reached a steady state; therefore, Q(t+1) = 1, Q'(t+1) = 0.


Example 5: Q(t) = 1, Q'(t) = 0, S = 0, R = 0

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(0 OR 0) = 1
         Q'(t+1 state 1) = NOT(S OR Q(t)) =  NOT(0 OR 1) = 0

State 2: Q(t+1 state 2)  = NOT(R OR Q'(t+1 state 1)) = NOT(0 OR 0) = 1
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  = NOT(0 OR 1) = 0     

We have reached a steady; state therefore, Q(t+1) = 1, Q'(t+1) = 0.



With Q=0, Q'=0, S=0, and R=0, an SR flip-flop will oscillate until one of the inputs is set to 1.

Example 6: Q(t) = 0, Q'(t) = 0, S = 0, R = 0

State 1: Q(t+1 state 1)  = NOT(R OR Q'(t)) = NOT(0 OR 0) = 1
         Q'(t+1 state 1) = NOT(S OR Q(t)) =  NOT(0 OR 0) = 1

State 2: Q(t+1 state 2)  = NOT(R OR Q'(t+1 state 1)) = NOT(0 OR 1) = 0
         Q'(t+1 state 2) = NOT(S OR Q(t+1 state 1))  = NOT(0 OR 1) = 0     

State 3: Q(t+1 state 3)  = NOT(R OR Q'(t+1 state 2)) = NOT(0 OR 0) = 1
         Q'(t+1 state 3) = NOT(S OR Q(t+1 state 2)) =  NOT(0 OR 0) = 1

State 4: Q(t+1 state 4)  = NOT(R OR Q'(t+1 state 3)) = NOT(0 OR 1) = 0
         Q'(t+1 state 4) = NOT(S OR Q(t+1 state 3))  = NOT(0 OR 1) = 0     


As one can see, a steady state is not possible until one of the inputs is set to 1 (which is usually handled by power-on reset circuitry).
bit-twiddler
sumber