Matriks terbalik Gauss Python
def inverse(a):
n = len(a) #defining the range through which loops will run
#constructing the n X 2n augmented matrix
P = [[0.0 for i in range(len(a))] for j in range(len(a))]
for i in range(3):
for j in range(3):
P[j][j] = 1.0
for i in range(len(a)):
a[i].extend(P[i])
#main loop for gaussian elimination begins here
for k in range(n):
if abs(a[k][k]) < 1.0e-12:
for i in range(k+1, n):
if abs(a[i][k]) > abs(a[k][k]):
for j in range(k, 2*n):
a[k][j], a[i][j] = a[i][j], a[k][j] #swapping of rows
break
pivot = a[k][k] #defining the pivot
if pivot == 0: #checking if matrix is invertible
print("This matrix is not invertible.")
return
else:
for j in range(k, 2*n): #index of columns of the pivot row
a[k][j] /= pivot
for i in range(n): #index the subtracted rows
if i == k or a[i][k] == 0: continue
factor = a[i][k]
for j in range(k, 2*n): #index the columns for subtraction
a[i][j] -= factor * a[k][j]
for i in range(len(a)): #displaying the matrix
for j in range(n, len(a[0])):
print(a[i][j], end = " ")
print()
Tender Toucan