“Kode Python matriks kebingungan” Kode Jawaban

Python matriks kebingungan

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_mat, square=True, annot=True, cmap='Blues', fmt='d', cbar=False)
Adventurous Addax

python plot_confusion_matrix

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(test_Y, predictions_dt)
cm
# after creating the confusion matrix, for better understaning plot the cm.
import seaborn as sn
plt.figure(figsize = (10,8))
# were 'cmap' is used to set the accent colour
sn.heatmap(cm, annot=True, cmap= 'flare',  fmt='d', cbar=True)
plt.xlabel('Predicted_Label')
plt.ylabel('Truth_Label')
plt.title('Confusion Matrix - Decision Tree')
Khola GenZ

Python matriks kebingungan

By definition, entry i,j in a confusion matrix is the number of 
observations actually in group i, but predicted to be in group j. 
Scikit-Learn provides a confusion_matrix function:

from sklearn.metrics import confusion_matrix
y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2]
y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2]
confusion_matrix(y_actu, y_pred)
# Output
# array([[3, 0, 0],
#        [0, 1, 2],
#        [2, 1, 3]], dtype=int64)
Bored Coder

Kode Python matriks kebingungan

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_predicted)
cm
# after creating the confusion matrix, for better understaning plot the cm.
import seaborn as sn
plt.figure(figsize = (10,7))
sn.heatmap(cm, annot=True)
plt.xlabel('Predicted')
plt.ylabel('Truth')
Clumsy Cowfish

Python matriks kebingungan

df_confusion = pd.crosstab(y_actu, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True)
Bad Bison

bagaimana mendapatkan matriks kebingungan di python

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
Colorful Copperhead

Jawaban yang mirip dengan “Kode Python matriks kebingungan”

Pertanyaan yang mirip dengan “Kode Python matriks kebingungan”

Lebih banyak jawaban terkait untuk “Kode Python matriks kebingungan” di Python

Jelajahi jawaban kode populer menurut bahasa

Jelajahi bahasa kode lainnya