Dari halaman Wikipedia tentang interval kepercayaan :
... jika interval kepercayaan dibangun di banyak analisis data terpisah dari percobaan yang diulang (dan mungkin berbeda), proporsi interval tersebut yang mengandung nilai sebenarnya dari parameter akan cocok dengan tingkat kepercayaan ...
Dan dari halaman yang sama:
Interval kepercayaan tidak memprediksi bahwa nilai sebenarnya dari parameter memiliki probabilitas tertentu berada dalam interval kepercayaan mengingat data benar-benar diperoleh.
Jika saya memahaminya dengan benar, pernyataan terakhir ini dibuat dengan interpretasi probabilitas yang sering dalam pikiran. Namun, dari perspektif probabilitas Bayesian, mengapa interval kepercayaan 95% tidak mengandung parameter sebenarnya dengan probabilitas 95%? Dan jika tidak, apa yang salah dengan alasan berikut?
Jika saya memiliki proses yang saya tahu menghasilkan jawaban yang benar 95% dari waktu maka probabilitas jawaban berikutnya yang benar adalah 0,95 (mengingat bahwa saya tidak memiliki informasi tambahan mengenai proses tersebut). Demikian pula jika seseorang menunjukkan saya interval kepercayaan yang dibuat oleh suatu proses yang akan berisi parameter benar 95% dari waktu, haruskah saya tidak benar mengatakan bahwa itu berisi parameter benar dengan probabilitas 0,95, mengingat apa yang saya ketahui?
Pertanyaan ini mirip dengan, tetapi tidak sama dengan, Mengapa CI 95% tidak menyiratkan kemungkinan 95% mengandung mean? Jawaban atas pertanyaan itu berfokus pada mengapa 95% CI tidak menyiratkan peluang 95% untuk mengandung rata-rata dari perspektif frequentist. Pertanyaan saya sama, tetapi dari perspektif probabilitas Bayesian.
sumber
Jawaban:
Pembaruan : Dengan manfaat dari beberapa tahun ke belakang, saya telah menulis perawatan yang lebih ringkas dari bahan yang sama dalam menanggapi pertanyaan serupa.
Cara Membangun Wilayah Percaya Diri
Mari kita mulai dengan metode umum untuk membangun wilayah kepercayaan. Ini dapat diterapkan pada parameter tunggal, untuk menghasilkan interval kepercayaan atau serangkaian interval; dan itu dapat diterapkan pada dua atau lebih parameter, untuk menghasilkan wilayah kepercayaan dimensi yang lebih tinggi.
Kami menyatakan bahwa statistik yang diamati DD berasal dari distribusi dengan parameter θθ , yaitu distribusi sampling s ( d | θ ) dis(d|θ) atas statistik yang mungkin dd , dan mencari wilayah kepercayaan untuk θθ dalam set nilai yang mungkin ΘΘ . Definisikan Wilayah Kepadatan Tertinggi (HDR): hh -HDR dari PDF adalah subset terkecil dari domainnya yang mendukung probabilitas hh . Notasikan hh -HDR dari s ( d | ψ )s(d|ψ) sebagai H ψHψ , untuk setiap ψ∈Θψ∈Θ adalah 0,95. . Kemudian,wilayah kepercayaan hh untuk } . Nilai khas hθθ , diberikan data DD , adalah himpunan C D = { ϕ : D ∈ H ϕCD={ϕ:D∈Hϕ} h
Interpretasi Frekuensi
Dari definisi sebelumnya dari wilayah kepercayaan, ikuti d ∈ H ψ ⟷ ψ ∈ C dd∈Hψ⟷ψ∈Cd
dengan C d = { ϕ : d ∈ H ϕ }Cd={ϕ:d∈Hϕ} . Sekarang bayangkan satu set besar ( imajiner ) pengamatan { D i }{Di} , yang diambil dalam keadaan mirip dengan DD . yaitu Mereka adalah sampel dari s ( d | θ )s(d|θ) . Karena H θHθ mendukung probabilitas massa hh dari PDF s(d | θ )s(d|θ) . , P( D i ∈ H θ ) = hP(Di∈Hθ)=h juga h untuk semua ii . Oleh karena itu, fraksi { D i }{Di} yang D i ∈ H θDi∈Hθ adalah hh . Jadi, dengan menggunakan persamaan di atas, fraksi { D i }{Di} untuk θ ∈ C D iθ∈CDi h
Maka, inilah yang sering diklaim oleh hh wilayah kepercayaan untuk θθ sebesar:
Kepercayaan wilayah C DCD karena tidak membuat klaim tentang probabilitas bahwa θθ kebohongan di suatu tempat! Alasannya sederhana bahwa tidak ada dalam fomulasi yang memungkinkan kita untuk berbicara tentang distribusi probabilitas lebih dari θθ . Interpretasinya hanyalah suprastruktur yang rumit, yang tidak meningkatkan basis. Basis hanya s ( d | θ )s(d|θ) dan DD , di mana θθ tidak muncul sebagai kuantitas yang didistribusikan, dan tidak ada informasi yang dapat kita gunakan untuk mengatasinya. Pada dasarnya ada dua cara untuk mendapatkan distribusi lebih dari θθ :
Dalam kedua kasus, θθ harus muncul di sebelah kiri di suatu tempat. Frequentists tidak dapat menggunakan metode mana pun, karena mereka berdua membutuhkan bidat sebelumnya.
Pandangan Bayesian
Yang paling sebuah Bayesian dapat membuat satu hh wilayah kepercayaan diri C DCD , diberikan tanpa kualifikasi, hanya interpretasi langsung: bahwa itu adalah himpunan φϕ yang DD jatuh di hh -HDR H φHϕ dari distribusi sampling s ( d | ϕ )s(d|ϕ) . Itu tidak selalu memberi tahu kita banyak tentang θθ , dan inilah sebabnya.
Probabilitas bahwa θ ∈ C Dθ∈CD , diberikan DD dan informasi latar belakang II , adalah:
P ( θ ∈ C D | D I )= ∫ C D p ( q | D I ) d θ= ∫ C D p ( D | q I ) p ( q | I )p ( D | I ) dθP(θ∈CD|DI)=∫CDp(θ|DI)dθ=∫CDp(D|θI)p(θ|I)p(D|I)dθ
Perhatikan bahwa, tidak seperti interpretasi frequentist, kami segera menuntut distribusi lebih dariθθ . Informasi latar belakang yangsayaI sampaikan kepada kami, seperti sebelumnya, bahwa distribusi sampling adalahs(d|θ)s(d|θ) :
P(θ∈CD|DI)=∫CDs(D|θ)p(θ|I)p(D|I)dθ=∫CDs(D|θ)p(θ|I)dθp(D|I)i.e.P(θ∈CD|DI)=∫CDs(D|θ)p(θ|I)dθ∫s(D|θ)p(θ|I)dθP(θ∈CD|DI)i.e.P(θ∈CD|DI)=∫CDs(D|θ)p(θ|I)p(D|I)dθ=∫CDs(D|θ)p(θ|I)dθp(D|I)=∫CDs(D|θ)p(θ|I)dθ∫s(D|θ)p(θ|I)dθ
Now this expression does not in general evaluate to hh , which is to say, the hh confidence region CDCD does not always contain θθ with probability hh . In fact it can be starkly different from hh . There are, however, many common situations in which it does evaluate to hh , which is why confidence regions are often consistent with our probabilistic intuitions.
Sebagai contoh, anggaplah bahwa gabungan PDF sebelumnya dari dd dan θθ adalah simetris dalam p d , θ ( d , θ | I ) = p d , θ ( θ , d | I )pd,θ(d,θ|I)=pd,θ(θ,d|I) . (Jelas ini melibatkan asumsi bahwa rentang PDF atas domain yang sama dalam dd dan θθ .) Kemudian, jika sebelumnya adalah p ( θ | I ) = f ( θ )p(θ|I)=f(θ) , kami memiliki s ( D | θ ) hlm(θ|I)=s(D|θ)f(θ)=s(θ|D)f(D)s(D|θ)p(θ|I)=s(D|θ)f(θ)=s(θ|D)f(D) . Hence
P(θ∈CD|DI)=∫CDs(θ|D)dθ∫s(θ|D)dθi.e.P(θ∈CD|DI)=∫CDs(θ|D)dθP(θ∈CD|DI)i.e.P(θ∈CD|DI)=∫CDs(θ|D)dθ∫s(θ|D)dθ=∫CDs(θ|D)dθ
From the definition of an HDR we know that for any ψ∈Θψ∈Θ
∫Hψs(d|ψ)dd=hand therefore that∫HDs(d|D)dd=hor equivalently∫HDs(θ|D)dθ=h∫Hψs(d|ψ)ddand therefore that∫HDs(d|D)ddor equivalently∫HDs(θ|D)dθ=h=h=h
Therefore, given that s(d|θ)f(θ)=s(θ|d)f(d)s(d|θ)f(θ)=s(θ|d)f(d) , CD=HDCD=HD implies P(θ∈CD|DI)=hP(θ∈CD|DI)=h . The antecedent satisfies
CD=HD⟷∀ψ[ψ∈CD↔ψ∈HD]CD=HD⟷∀ψ[ψ∈CD↔ψ∈HD]
Applying the equivalence near the top:
CD=HD⟷∀ψ[D∈Hψ↔ψ∈HD]CD=HD⟷∀ψ[D∈Hψ↔ψ∈HD]
Thus, the confidence region CDCD contains θθ with probability hh if for all possible values ψψ of θθ , the hh -HDR of s(d|ψ)s(d|ψ) contains DD if and only if the hh -HDR of s(d|D)s(d|D) contains ψψ .
Now the symmetric relation D∈Hψ↔ψ∈HDD∈Hψ↔ψ∈HD is satisfied for all ψψ when s(ψ+δ|ψ)=s(D−δ|D)s(ψ+δ|ψ)=s(D−δ|D) for all δδ that span the support of s(d|D)s(d|D) and s(d|ψ)s(d|ψ) . We can therefore form the following argument:
Let's apply the argument to a confidence interval on the mean of a 1-D normal distribution (μ,σ)(μ,σ) , given a sample mean ˉxx¯ from nn measurements. We have θ=μθ=μ and d=ˉxd=x¯ , so that the sampling distribution is
s(d|θ)=√nσ√2πe−n2σ2(d−θ)2s(d|θ)=n−−√σ2π−−√e−n2σ2(d−θ)2
Suppose also that we know nothing about θθ before taking the data (except that it's a location parameter) and therefore assign a uniform prior: f(θ)=kf(θ)=k . Clearly we now have s(d|θ)f(θ)=s(θ|d)f(d)s(d|θ)f(θ)=s(θ|d)f(d) , so the first premise is satisfied. Let s(d|θ)=g((d−θ)2)s(d|θ)=g((d−θ)2) . (i.e. It can be written in that form.) Then
s(ψ+δ|ψ)=g((ψ+δ−ψ)2)=g(δ2)ands(D−δ|D)=g((D−δ−D)2)=g(δ2)so that∀ψ∀δ[s(ψ+δ|ψ)=s(D−δ|D)]s(ψ+δ|ψ)=g((ψ+δ−ψ)2)=g(δ2)ands(D−δ|D)=g((D−δ−D)2)=g(δ2)so that∀ψ∀δ[s(ψ+δ|ψ)=s(D−δ|D)]
whereupon the second premise is satisfied. Both premises being true, the eight-point argument leads us to conclude that the probability that θθ lies in the confidence interval CDCD is hh !
We therefore have an amusing irony:
Final Remarks
We have identified conditions (i.e. the two premises) under which the hh confidence region does indeed yield probability hh that θ∈CDθ∈CD . A frequentist will baulk at the first premise, because it involves a prior on θθ , and this sort of deal-breaker is inescapable on the route to a probability. But for a Bayesian, it is acceptable---nay, essential. These conditions are sufficient but not necessary, so there are many other circumstances under which the Bayesian P(θ∈CD|DI)P(θ∈CD|DI) equals hh . Equally though, there are many circumstances in which P(θ∈CD|DI)≠hP(θ∈CD|DI)≠h , especially when the prior information is significant.
We have applied a Bayesian analysis just as a consistent Bayesian would, given the information at hand, including statistics DD . But a Bayesian, if he possibly can, will apply his methods to the raw measurements instead---to the {xi}{xi} , rather than ˉxx¯ . Oftentimes, collapsing the raw data into summary statistics DD destroys information in the data; and then the summary statistics are incapable of speaking as eloquently as the original data about the parameters θθ .
sumber
Two answers to this, the first being less helpful than the second
There are no confidence intervals in Bayesian statistics, so the question doesn't pertain.
In Bayesian statistics, there are however credible intervals, which play a similar role to confidence intervals. If you view priors and posteriors in Bayesian statistics as quantifying the reasonable belief that a parameter takes on certain values, then the answer to your question is yes, a 95% credible interval represents an interval within which a parameter is believed to lie with 95% probability.
yes, the process guesses a right answer with 95% probability
Just the same as your process, the confidence interval guesses the correct answer with 95% probability. We're back in the world of classical statistics here: before you gather the data you can say there's a 95% probability of randomly gathered data determining the bounds of the confidence interval such that the mean is within the bounds.
With your process, after you've gotten your answer, you can't say based on whatever your guess was, that the true answer is the same as your guess with 95% probability. The guess is either right or wrong.
And just the same as your process, in the confidence interval case, after you've gotten the data and have an actual lower and upper bound, the mean is either within those bounds or it isn't, i.e. the chance of the mean being within those particular bounds is either 1 or 0. (Having skimmed the question you refer to it seems this is covered in much more detail there.)
There are a couple of ways of looking at this
Technically, the confidence interval hasn't been produced using a prior and Bayes theorem, so if you had a prior belief about the parameter concerned, there would be no way you could interpret the confidence interval in the Bayesian framework.
Another widely used and respected interpretation of confidence intervals is that they provide a "plausible range" of values for the parameter (see, e.g., here). This de-emphasises the "repeated experiments" interpretation.
Moreover, under certain circumstances, notably when the prior is uninformative (doesn't tell you anything, e.g. flat), confidence intervals can produce exactly the same interval as a credible interval. In these circumstances, as a Bayesianist you could argue that had you taken the Bayesian route you would have gotten exactly the same results and you could interpret the confidence interval in the same way as a credible interval.
sumber
I'll give you an extreme example where they are different.
Suppose I create my 95% confidence interval for a parameter θθ as follows. Start by sampling the data. Then generate a random number between 00 and 11 . Call this number uu . If uu is less than 0.950.95 then return the interval (−∞,∞)(−∞,∞) . Otherwise return the "null" interval.
Now over continued repititions, 95% of the CIs will be "all numbers" and hence contain the true value. The other 5% contain no values, hence have zero coverage. Overall, this is a useless, but technically correct 95% CI.
The Bayesian credible interval will be either 100% or 0%. Not 95%.
sumber
"from a Bayesian probability perspective, why doesn't a 95% confidence interval contain the true parameter with 95% probability? "
In Bayesian Statistics the parameter is not a unknown value, it is a Distribution. There is no interval containing the "true value", for a Bayesian point of view it does not even make sense. The parameter it's a random variable, you can perfectly know the probability of that value to be between x_inf an x_max if you know the distribuition. It's just a diferent mindset about the parameters, usually Bayesians used the median or average value of the distribuition of the parameter as a "estimate". There is not a confidence interval in Bayesian Statistics, something similar is called credibility interval.
Now from a frequencist point of view, the parameter is a "Fixed Value", not a random variable, can you really obtain probability interval (a 95% one) ? Remember that it's a fixed value not a random variable with a known distribution. Thats why you past the text :"A confidence interval does not predict that the true value of the parameter has a particular probability of being in the confidence interval given the data actually obtained."
The idea of repeating the experience over and over... is not Bayesian reasoning it's a Frequencist one. Imagine a real live experiment that you can only do once in your life time, can you/should you built that confidence interval (from the classical point of view )?.
But... in real life the results could get pretty close ( Bayesian vs Frequencist), maybe thats why It could be confusing.
sumber