Saya ingin menguji korelasi sampel untuk signifikansi, menggunakan nilai-p, yaitu
Saya mengerti bahwa saya dapat menggunakan z-transform Fisher untuk menghitungnya
dan menemukan nilai-p oleh
menggunakan distribusi normal standar.
Pertanyaan saya adalah: seberapa besar seharusnya transformasi yang tepat? Jelas, harus lebih besar dari 3. Buku teks saya tidak menyebutkan batasan, tetapi pada slide 29 dari presentasi ini dikatakan bahwa harus lebih besar dari 10. Untuk data yang akan saya pertimbangkan, saya akan memiliki sesuatu seperti .
correlation
sample-size
fisher-transform
Gunnhild
sumber
sumber
Jawaban:
Untuk pertanyaan seperti ini saya hanya akan menjalankan simulasi dan melihat apakah nilai- berperilaku seperti yang saya harapkan. Nilai- p adalah probabilitas untuk secara acak mengambil sampel yang menyimpang paling tidak dari hipotesis nol seperti data yang Anda amati jika hipotesis nol itu benar. Jadi jika kita memiliki banyak sampel seperti itu, dan salah satu dari mereka memiliki nilai p -0,04 maka kita akan mengharapkan 4% dari sampel tersebut memiliki nilai kurang dari 0,04. Hal yang sama berlaku untuk semua nilai p lainnya yang mungkin .p p p p
Di bawah ini adalah simulasi di Stata. Grafik memeriksa apakah nilai- mengukur apa yang seharusnya mereka ukur, yaitu, mereka menunjukkan seberapa besar proporsi sampel dengan nilai p- kurang dari nilai p- menyimpang dari nilai p- nilai. Seperti yang Anda lihat, tes itu agak bermasalah dengan sejumlah kecil pengamatan. Apakah itu terlalu bermasalah untuk penelitian Anda adalah panggilan penilaian Anda.p p p p
sumber
FWIW Saya melihat rekomendasi dalam Myers & Well (desain penelitian dan analisis statistik, edisi kedua, 2003, hal. 492). Catatan kaki menyatakan:N≥10
sumber
Poin Nick cukup adil: perkiraan dan rekomendasi selalu beroperasi di beberapa wilayah abu-abu.
sumber