Simulasi Regresi Linier Berganda

14

Saya baru mengenal bahasa R. Saya ingin tahu bagaimana mensimulasikan dari model regresi linier berganda yang memenuhi keempat asumsi regresi.


oke terima kasih.

Katakanlah saya ingin mensimulasikan data berdasarkan kumpulan data ini:

y<-c(18.73,14.52,17.43,14.54,13.44,24.39,13.34,22.71,12.68,19.32,30.16,27.09,25.40,26.05,33.49,35.62,26.07,36.78,34.95,43.67)
x1<-c(610,950,720,840,980,530,680,540,890,730,670,770,880,1000,760,590,910,650,810,500)
x2<-c(1,1,3,2,1,1,3,3,2,2,1,3,3,2,2,2,3,3,1,2)

fit<-lm(y~x1+x2)
summary(fit)

maka saya mendapatkan output:

Call:
lm(formula = y ~ x1 + x2)

Residuals:
     Min       1Q   Median       3Q      Max 
-13.2805  -7.5169  -0.9231   7.2556  12.8209 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 42.85352   11.33229   3.782  0.00149 **
x1          -0.02534    0.01293  -1.960  0.06662 . 
x2           0.33188    2.41657   0.137  0.89238   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

Residual standard error: 8.679 on 17 degrees of freedom
Multiple R-squared:  0.1869,    Adjusted R-squared:  0.09127 
F-statistic: 1.954 on 2 and 17 DF,  p-value: 0.1722

Pertanyaan saya adalah bagaimana mensimulasikan data baru yang meniru data asli di atas?

Nor Hisham Haron
sumber

Jawaban:

28
  1. x1x2

  2. βiβ0

  3. σ2σ

  4. εσ2

  5. y=β0+β1x1+β2x2+...+βkxk+ε

yx

misal di R Anda bisa melakukan sesuatu seperti:

x1 <- 11:30
x2 <- runif(20,5,95)
x3 <- rbinom(20,1,.5)

b0 <- 17
b1 <- 0.5
b2 <- 0.037
b3 <- -5.2
sigma <- 1.4

eps <- rnorm(x1,0,sigma)
y <- b0 + b1*x1  + b2*x2  + b3*x3 + eps

y

 summary(lm(y~x1+x2+x3))

memberi

Call:
lm(formula = y ~ x1 + x2 + x3)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.6967 -0.4970  0.1152  0.7536  1.6511 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 16.28141    1.32102  12.325 1.40e-09 ***
x1           0.55939    0.04850  11.533 3.65e-09 ***
x2           0.01715    0.01578   1.087    0.293    
x3          -4.91783    0.66547  -7.390 1.53e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1

Residual standard error: 1.241 on 16 degrees of freedom
Multiple R-squared:  0.9343,    Adjusted R-squared:  0.9219 
F-statistic: 75.79 on 3 and 16 DF,  p-value: 1.131e-09

Anda dapat menyederhanakan prosedur ini dalam beberapa cara, tetapi saya pikir mengeja itu akan membantu untuk memulainya.

yepsy

Glen_b -Reinstate Monica
sumber
Apakah mungkin untuk mengubah kesalahan standar estimasi? Saya menggunakan skrip yang sedikit dimodifikasi ( rnorm()alih-alih 11:30), tetapi tidak peduli berapa banyak saya meningkatkan kesalahan (sigma), kesalahan standar dari perkiraan kira-kira sama.
Daniel
2

Berikut adalah kode lain untuk menghasilkan regresi linier berganda dengan kesalahan mengikuti distribusi normal:

sim.regression<-function(n.obs=10,coefficients=runif(10,-5,5),s.deviation=.1){

  n.var=length(coefficients)  
  M=matrix(0,ncol=n.var,nrow=n.obs)

  beta=as.matrix(coefficients)

  for (i in 1:n.var){
    M[,i]=rnorm(n.obs,0,1)
  }

  y=M %*% beta + rnorm(n.obs,0,s.deviation)

  return (list(x=M,y=y,coeff=coefficients))

}
TPArrow
sumber