Versi yang sangat sederhana dari teorema terbatas pusat seperti di bawah ini yang merupakan Lindeberg-Lévy CLT. Saya tidak mengerti mengapa ada di sebelah kiri. Dan Lyapunov CLT mengatakan tetapi mengapa bukan ? Adakah yang bisa memberitahu saya apa saja faktor-faktor ini, seperti dan ? bagaimana kita mendapatkannya di teorema?
central-limit-theorem
intuition
Babi terbang
sumber
sumber
Jawaban:
Pertanyaan yang bagus (+1) !!
Anda akan ingat bahwa untuk variabel acak independen dan Y , V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) dan V a r ( a ⋅ X ) = a 2 ⋅ V a r ( X ) . Jadi varians dari Σ n i = 1 X i adalahX Y Var(X+Y)=Var(X)+Var(Y) Var(a⋅X)=a2⋅Var(X) ∑ni=1Xi , dan varians ˉ X = 1∑ni=1σ2=nσ2 adalahnσ2/n2=σ2/n.X¯=1n∑ni=1Xi nσ2/n2=σ2/n
Ini untuk varians . Untuk membakukan variabel acak, Anda membaginya dengan standar deviasi. Seperti yang Anda tahu, nilai yang diharapkan dari adalah μ , jadi variabelX¯ μ
memiliki nilai yang diharapkan 0 dan varian 1. Jadi jika cenderung ke Gaussian, itu harus menjadi standar GaussianN(0,
Mengenai poin kedua Anda, saya percaya bahwa persamaan yang ditunjukkan di atas menggambarkan bahwa Anda harus membaginya dengan dan bukan √σ untuk membakukan persamaan, menjelaskan mengapa Anda menggunakansn(penaksirσ)dan bukan √σ−−√ sn σ) .sn−−√
Tambahan: @whuber menyarankan untuk mendiskusikan mengapa penskalaan oleh . Dia melakukannya disana, tetapi karena jawabannya sangat panjang, saya akan mencoba menangkap esensi argumennya (yang merupakan rekonstruksi pemikiran de Moivre).n−−√
Jika Anda menambahkan sejumlah besar dari +1 dan -1, Anda dapat memperkirakan probabilitas bahwa jumlah tersebut akan menjadi j dengan penghitungan dasar. Log probabilitas ini sebanding dengan - j 2 / n . Jadi jika kita ingin probabilitas di atas konvergen ke konstanta ketika n menjadi besar, kita harus menggunakan faktor normalisasi dalam O ( √n j −j2/n n .O(n−−√)
Menggunakan alat matematika modern (post de Moivre), Anda dapat melihat perkiraan yang disebutkan di atas dengan memperhatikan bahwa probabilitas yang dicari adalah
yang kami perkirakan dengan rumus Stirling
sumber
There is a nice theory of what kind of distributions can be limiting distributions of sums of random variables. The nice resource is the following book by Petrov, which I personally enjoyed immensely.
It turns out, that if you are investigating limits of this type
There is a lot of mathematics going around then, which boils to several theorems which completely characterizes what happens in the limit. One of such theorems is due to Feller:
Theorem Let{Xn;n=1,2,...} be a sequence of independent random variables, Vn(x) be the distribution function of Xn , and an be a sequence of positive constant. In order that
and
it is necessary and sufficient that
and
This theorem then gives you an idea of whatan should look like.
The general theory in the book is constructed in such way that norming constant is restricted in any way, but final theorems which give necessary and sufficient conditions, do not leave any room for norming constant other thann−−√ .
sumber
sn represents the sample standard deviation for the sample mean. sn 2 is the sample variance for the sample mean and it equals Sn 2 /n. Where Sn 2 is the sample estimate of the population variance. Since sn =Sn /√n that explains how √n appears in the first formula. Note there would be a σ in the denominator if the limit were
N(0,1) but the limit is given as N(0, σ2 ). Since Sn is a consistent estimate of σ it is used in the secnd equation to taken σ out of the limit.
sumber
Intuitively, ifZn→N(0,σ2) for some σ2 we should expect that Var(Zn) is roughly equal to σ2 ; it seems like a pretty reasonable expectation, though I don't think it is necessary in general. The reason for the n−−√ in the first expression is that the variance of X¯n−μ goes to 0 like 1n and so the n−−√ is inflating the variance so that the expression just has variance equal to σ2 . In the second expression, the term sn is defined to be ∑ni=1Var(Xi)−−−−−−−−−−−√ while the variance of the numerator grows like ∑ni=1Var(Xi) , so we again have that the variance of the whole expression is a constant (1 in this case).
Essentially, we know something "interesting" is happening with the distribution ofX¯n:=1n∑iXi , but if we don't properly center and scale it we won't be able to see it. I've heard this described sometimes as needing to adjust the microscope. If we don't blow up (e.g.) X¯−μ by n−−√ then we just have X¯n−μ→0 in distribution by the weak law; an interesting result in it's own right but not as informative as the CLT. If we inflate by any factor an which is dominated by n−−√ , we still get an(X¯n−μ)→0 while any factor an which dominates n−−√ gives an(X¯n−μ)→∞ . It turns out n−−√ is just the right magnification to be able to see what is going on in this case (note: all convergence here is in distribution; there is another level of magnification which is interesting for almost sure convergence, which gives rise to the law of iterated logarithm).
sumber