Adakah cara yang bisa dilakukan oleh seorang pepatah untuk meyakinkan verifier bahwa beberapa ekspresi HORN-SAT memuaskan?
Tentu saja ini mungkin tampak konyol, karena ada algoritma waktu linear untuk HORN-SAT. Di sisi lain, HORN-SAT adalah P-complete, yang berarti tidak memiliki algoritma ruang-log kecuali P = L. Dengan demikian, batasi kemampuan komputasi verifier menjadi L. Sekarang verifier sangat lemah, sehingga masalahnya tidak lagi konyol.
Pelintiran lain dalam hal ini adalah apakah itu bisa menjadi bukti tanpa pengetahuan.
cc.complexity-theory
interactive-proofs
zero-knowledge
Shaun Harker
sumber
sumber
Jawaban:
Ini http://www.cs.ubc.ca/~condon/papers/ips-survey.pdf survei yang dilakukan oleh Anne Condon mengandung banyak fakta tentang ruang yang dibatasi sistem bukti interaktif.
Ada beberapa model, dan perbedaan utamanya adalah apakah Anda mengizinkan koin pribadi untuk verifikasi (IP) atau koin publik saja (AM), dan apakah Anda juga membatasi waktu verifikasi menjadi polinomial (tidak tersirat oleh ruang yang terikat sendirian).
Tanpa batasan waktu, jawabannya adalah ya: IP (ruang log) berisi EXP dan AM (ruang log) = P.
Perhatikan bahwa IP (ruang log) kemungkinan besar lebih besar dari IP standar. Di sisi lain IP (ruang log, waktu poli) = IP = PSPACE.
AM (log-space, poly-time) = P karena 'Mendelegasikan Komputasi: Bukti Interaktif untuk Muggle' oleh Goldwasser et al., STOC 2008.
Lebih lanjut, makalah 'Nol pengetahuan dengan pengukur ruang-log' oleh Kilian (FOCS 88) menunjukkan cara mendapatkan sistem bukti-bukti nol-waktu-ruang poly-time untuk semua dalam IP (dengan koin pribadi jelas).
sumber