Tentukan Ada Berapa Roda

23

Penjelasan non-matematika

Ini adalah penjelasan yang dimaksudkan untuk dapat didekati terlepas dari latar belakang Anda. Sayangnya itu melibatkan beberapa matematika, tetapi harus dimengerti oleh kebanyakan orang dengan tingkat pemahaman sekolah menengah

Urutan penunjuk adalah urutan apa pun sehingga a (n + 1) = a (na (n)) .

Mari kita pisahkan formula ini sedikit untuk memahami artinya. Ini hanya berarti mencari tahu istilah berikutnya dalam urutan yang kita lihat pada istilah terakhir, mengambil banyak langkah kembali dan menyalin istilah yang kita temukan. Sebagai contoh jika kita memiliki urutan sejauh ini

... 3 4 4 4 3 ?

Kami akan mengambil 3 langkah kembali dari 3

... 3 4 4 4 3 ?
      ^

membuat hasil kami 4.

Sekarang biasanya kita memainkan game ini pada kaset yang tak terbatas di kedua arah, tetapi kita juga bisa memainkannya di roda di mana setelah beberapa langkah kita kembali ke awal urutan.

Misalnya di sini adalah visualisasi dari urutan [1,3,1,3,1,3]

Roda

Sekarang kita mungkin memperhatikan bahwa angka apa pun, x dalam roda yang melebihi jumlah sel dalam roda, n , mungkin juga x mod n karena setiap rangkaian lengkap di sekitar roda sama dengan tidak melakukan apa-apa. Jadi kami hanya akan mempertimbangkan roda dengan semua anggota lebih kecil dari ukuran roda.

Penjelasan matematika

Urutan penunjuk adalah urutan apa pun sehingga a (n + 1) = a (na (n)) . Biasanya ini didefinisikan dari bilangan bulat ke bilangan bulat, namun Anda mungkin memperhatikan bahwa satu-satunya hal yang diperlukan dalam definisi ini adalah fungsi penerus dan fungsi terbalik. Karena semua grup siklik memiliki keduanya, kita dapat mempertimbangkan urutan penunjuk pada grup siklik.

Jika kita mulai mencari jenis fungsi ini, kita akan melihat bahwa untuk setiap fungsi ada beberapa fungsi yang serupa. Misalnya pada Z 3 , 3 berikut adalah semua fungsi yang sesuai dengan persyaratan kami.

f1 : [1,2,2]
f2 : [2,1,2]
f3 : [2,2,1]

(Di sini daftar digunakan untuk mewakili fungsi untuk mendapatkan hasil, cukup indeks daftar dengan input)

Kita mungkin memperhatikan bahwa semua fungsi ini adalah "rotasi" satu sama lain. Untuk meresmikan apa yang saya maksud dengan rotasi, fungsi b adalah rotasi sebuah IFF

persamaan 1

Sekarang jika kita melibatkan sedikit matematika di sini, kita dapat benar-benar menunjukkan bahwa jika a adalah urutan penunjuk, setiap rotasi a juga merupakan urutan penunjuk. Dengan demikian kita akan benar-benar mempertimbangkan setiap urutan yang merupakan rotasi satu sama lain sebagai setara.

Tugas

Diberikan n sebagai input output jumlah urutan pointer yang memiliki ukuran n .

Ini adalah sehingga jawaban akan dinilai dalam byte dengan lebih sedikit byte lebih baik.

Testcases

Saat ini testcases kurang sedikit, saya punya program komputer untuk menghasilkan ini tetapi sangat lambat melakukannya. Jika ada yang ingin berkontribusi testcases yang lebih besar (bahwa mereka dapat memverifikasi dengan benar) mereka bebas untuk melakukannya. Di bawah ini beberapa tes adalah daftar semua fungsi yang saya temukan, ini mungkin berguna untuk debugging. Saya tidak dapat menambahkan ini untuk yang lebih besar karena batasan karakter.

Jika Anda ingin kode yang saya gunakan untuk menghasilkan ini di sini

1 -> 1
[[0]]
2 -> 2
[[1,1],[0,0]]
3 -> 4
[[2,2,2],[2,2,1],[1,1,1],[0,0,0]]
4 -> 7
[[3,3,3,3],[3,3,3,2],[2,2,2,2],[3,3,3,1],[3,1,3,1],[1,1,1,1],[0,0,0,0]]
5 -> 12
[[4,4,4,4,4],[4,4,4,4,3],[3,3,3,3,3],[4,4,4,4,2],[4,3,4,4,2],[2,2,2,2,2],[4,4,4,4,1],[4,3,4,4,1],[4,4,2,4,1],[4,4,1,4,1],[1,1,1,1,1],[0,0,0,0,0]]
6 -> 35
[[5,5,5,5,5,5],[5,5,5,5,5,4],[5,5,4,5,5,4],[4,4,4,4,4,4],[5,5,5,5,5,3],[5,4,5,5,5,3],[5,5,5,3,5,3],[5,3,5,3,5,3],[3,3,3,3,3,3],[5,5,5,5,5,2],[5,4,5,5,5,2],[5,3,5,5,5,2],[5,5,4,5,5,2],[5,5,2,5,5,2],[5,5,2,5,2,2],[5,3,2,5,2,2],[5,2,2,5,2,2],[4,2,2,4,2,2],[2,2,2,2,2,2],[5,5,5,5,5,1],[5,4,5,5,5,1],[5,3,5,5,5,1],[5,5,4,5,5,1],[5,5,2,5,5,1],[5,5,1,5,5,1],[5,5,5,3,5,1],[5,3,5,3,5,1],[5,5,5,2,5,1],[5,5,5,1,5,1],[5,3,5,1,5,1],[5,1,5,1,5,1],[3,1,3,1,3,1],[2,2,1,2,2,1],[1,1,1,1,1,1],[0,0,0,0,0,0]]
7 -> 80
[[6,6,6,6,6,6,6],[6,6,6,6,6,6,5],[6,6,6,5,6,6,5],[5,5,5,5,5,5,5],[6,6,6,6,6,6,4],[6,5,6,6,6,6,4],[6,6,6,5,6,6,4],[6,6,6,6,4,6,4],[6,5,6,6,4,6,4],[6,4,6,6,6,4,4],[4,4,4,4,4,4,4],[6,6,6,6,6,6,3],[6,5,6,6,6,6,3],[6,4,6,6,6,6,3],[6,6,5,6,6,6,3],[6,6,4,6,6,6,3],[5,6,6,5,6,6,3],[6,6,6,6,4,6,3],[6,5,6,6,4,6,3],[6,6,4,6,4,6,3],[6,4,4,6,4,6,3],[6,6,6,6,3,6,3],[6,6,4,6,3,6,3],[3,3,3,3,3,3,3],[6,6,6,6,6,6,2],[6,5,6,6,6,6,2],[6,4,6,6,6,6,2],[6,3,6,6,6,6,2],[6,6,5,6,6,6,2],[6,6,4,6,6,6,2],[6,6,6,5,6,6,2],[6,4,6,5,6,6,2],[6,3,6,5,6,6,2],[6,6,6,3,6,6,2],[6,4,6,3,6,6,2],[6,3,6,3,6,6,2],[6,6,6,2,6,6,2],[6,6,2,6,6,3,2],[6,6,6,2,6,2,2],[6,6,4,2,6,2,2],[6,6,3,2,6,2,2],[2,2,2,2,2,2,2],[6,6,6,6,6,6,1],[6,5,6,6,6,6,1],[6,4,6,6,6,6,1],[6,3,6,6,6,6,1],[6,6,5,6,6,6,1],[6,6,4,6,6,6,1],[6,6,2,6,6,6,1],[6,6,6,5,6,6,1],[6,4,6,5,6,6,1],[6,3,6,5,6,6,1],[6,6,6,3,6,6,1],[6,4,6,3,6,6,1],[6,3,6,3,6,6,1],[6,6,6,2,6,6,1],[6,6,6,1,6,6,1],[6,6,6,6,4,6,1],[6,5,6,6,4,6,1],[6,3,6,6,4,6,1],[6,6,4,6,4,6,1],[6,4,4,6,4,6,1],[6,6,2,6,4,6,1],[6,6,1,6,4,6,1],[6,6,6,6,3,6,1],[6,6,4,6,3,6,1],[6,6,2,6,3,6,1],[6,6,1,6,3,6,1],[6,6,6,6,2,6,1],[6,5,6,6,2,6,1],[6,3,6,6,2,6,1],[6,6,6,6,1,6,1],[6,5,6,6,1,6,1],[6,3,6,6,1,6,1],[6,6,4,6,1,6,1],[6,6,2,6,1,6,1],[6,6,1,6,1,6,1],[3,6,1,6,6,3,1],[1,1,1,1,1,1,1],[0,0,0,0,0,0,0]]
8 -> 311
[[7,7,7,7,7,7,7,7],[7,7,7,7,7,7,7,6],[7,7,7,6,7,7,7,6],[7,7,7,7,6,7,7,6],[6,6,6,6,6,6,6,6],[7,7,7,7,7,7,7,5],[7,6,7,7,7,7,7,5],[7,7,7,6,7,7,7,5],[7,7,7,5,7,7,7,5],[7,7,7,7,6,7,7,5],[7,6,7,7,6,7,7,5],[7,7,7,7,7,5,7,5],[7,6,7,7,7,5,7,5],[7,7,7,5,7,5,7,5],[7,5,7,5,7,5,7,5],[7,5,7,7,7,7,5,5],[7,5,7,6,7,7,5,5],[7,5,7,7,7,6,5,5],[5,5,5,5,5,5,5,5],[7,7,7,7,7,7,7,4],[7,6,7,7,7,7,7,4],[7,5,7,7,7,7,7,4],[7,7,6,7,7,7,7,4],[7,7,5,7,7,7,7,4],[6,7,7,6,7,7,7,4],[5,5,7,5,7,7,7,4],[7,7,7,7,6,7,7,4],[7,6,7,7,6,7,7,4],[7,7,5,7,6,7,7,4],[7,7,7,7,4,7,7,4],[7,6,7,7,4,7,7,4],[7,7,7,7,7,5,7,4],[7,6,7,7,7,5,7,4],[7,5,7,7,7,5,7,4],[7,7,6,7,7,5,7,4],[7,7,4,7,7,5,7,4],[7,7,7,7,7,4,7,4],[7,7,6,7,7,4,7,4],[7,7,4,7,7,4,7,4],[7,4,7,7,7,7,5,4],[7,4,7,7,4,7,5,4],[4,4,4,4,4,4,4,4],[7,7,7,7,7,7,7,3],[7,6,7,7,7,7,7,3],[7,5,7,7,7,7,7,3],[7,4,7,7,7,7,7,3],[7,7,6,7,7,7,7,3],[7,7,5,7,7,7,7,3],[7,7,4,7,7,7,7,3],[7,7,7,6,7,7,7,3],[7,5,7,6,7,7,7,3],[7,4,7,6,7,7,7,3],[7,7,7,5,7,7,7,3],[7,5,7,5,7,7,7,3],[7,4,7,5,7,7,7,3],[7,7,7,3,7,7,7,3],[6,7,7,7,6,7,7,3],[6,7,7,3,6,7,7,3],[7,7,7,7,7,5,7,3],[7,6,7,7,7,5,7,3],[7,5,7,7,7,5,7,3],[7,7,6,7,7,5,7,3],[7,7,4,7,7,5,7,3],[7,7,7,5,7,5,7,3],[7,5,7,5,7,5,7,3],[7,7,5,5,7,5,7,3],[7,6,5,5,7,5,7,3],[7,4,5,5,7,5,7,3],[7,7,7,3,7,5,7,3],[7,5,7,3,7,5,7,3],[7,7,7,7,7,4,7,3],[7,7,6,7,7,4,7,3],[7,7,4,7,7,4,7,3],[7,7,7,5,7,4,7,3],[7,7,7,3,7,4,7,3],[7,7,7,7,7,3,7,3],[7,6,7,7,7,3,7,3],[7,5,7,7,7,3,7,3],[7,7,7,5,7,3,7,3],[7,5,7,5,7,3,7,3],[7,7,7,3,7,3,7,3],[7,5,7,3,7,3,7,3],[7,3,7,3,7,3,7,3],[7,3,5,7,7,7,5,3],[7,3,5,3,7,3,5,3],[5,3,5,3,5,3,5,3],[7,7,7,3,7,7,3,3],[7,5,7,3,7,7,3,3],[7,4,7,3,7,7,3,3],[7,7,4,3,7,7,3,3],[7,7,3,3,7,7,3,3],[7,7,7,3,7,6,3,3],[7,5,7,3,7,6,3,3],[7,7,4,3,7,6,3,3],[7,7,3,3,7,6,3,3],[7,6,3,3,7,6,3,3],[7,7,3,3,7,3,3,3],[7,6,3,3,7,3,3,3],[7,4,3,3,7,3,3,3],[7,3,3,3,7,3,3,3],[6,3,3,3,6,3,3,3],[5,3,3,3,5,3,3,3],[3,3,3,3,3,3,3,3],[7,7,7,7,7,7,7,2],[7,6,7,7,7,7,7,2],[7,5,7,7,7,7,7,2],[7,4,7,7,7,7,7,2],[7,3,7,7,7,7,7,2],[7,7,6,7,7,7,7,2],[7,7,5,7,7,7,7,2],[7,7,4,7,7,7,7,2],[7,7,7,6,7,7,7,2],[7,5,7,6,7,7,7,2],[7,4,7,6,7,7,7,2],[7,3,7,6,7,7,7,2],[7,7,7,5,7,7,7,2],[7,5,7,5,7,7,7,2],[7,4,7,5,7,7,7,2],[7,3,7,5,7,7,7,2],[7,7,7,3,7,7,7,2],[7,5,7,3,7,7,7,2],[7,4,7,3,7,7,7,2],[7,3,7,3,7,7,7,2],[7,7,7,2,7,7,7,2],[7,7,7,7,6,7,7,2],[7,6,7,7,6,7,7,2],[7,4,7,7,6,7,7,2],[7,3,7,7,6,7,7,2],[7,7,5,7,6,7,7,2],[7,7,4,7,6,7,7,2],[7,7,7,7,4,7,7,2],[7,6,7,7,4,7,7,2],[7,4,7,7,4,7,7,2],[7,3,7,7,4,7,7,2],[7,7,5,7,4,7,7,2],[7,7,4,7,4,7,7,2],[7,5,4,7,4,7,7,2],[7,7,7,7,3,7,7,2],[7,7,5,7,3,7,7,2],[7,7,4,7,3,7,7,2],[7,7,7,7,2,7,7,2],[7,6,7,7,2,7,7,2],[7,4,7,7,2,7,7,2],[7,3,7,7,2,7,7,2],[4,7,7,7,7,4,7,2],[4,7,6,7,7,4,7,2],[4,7,4,7,7,4,7,2],[4,7,7,5,7,4,7,2],[4,7,7,2,7,4,7,2],[3,3,7,7,7,3,7,2],[3,3,7,5,7,3,7,2],[3,3,7,7,4,3,7,2],[3,3,7,7,3,3,7,2],[3,3,7,6,3,3,7,2],[3,3,7,3,3,3,7,2],[3,3,7,2,3,3,7,2],[7,7,2,7,7,7,4,2],[7,7,2,7,4,7,4,2],[7,7,2,7,3,7,4,2],[7,7,7,2,7,7,3,2],[7,7,3,2,7,7,3,2],[7,4,7,2,4,7,3,2],[3,3,3,2,3,3,3,2],[7,7,7,7,2,7,2,2],[7,6,7,7,2,7,2,2],[7,4,7,7,2,7,2,2],[7,7,7,5,2,7,2,2],[7,4,7,5,2,7,2,2],[7,7,7,4,2,7,2,2],[7,4,7,4,2,7,2,2],[2,2,2,2,2,2,2,2],[7,7,7,7,7,7,7,1],[7,6,7,7,7,7,7,1],[7,5,7,7,7,7,7,1],[7,4,7,7,7,7,7,1],[7,3,7,7,7,7,7,1],[7,7,6,7,7,7,7,1],[7,7,5,7,7,7,7,1],[7,7,4,7,7,7,7,1],[7,7,2,7,7,7,7,1],[7,7,7,6,7,7,7,1],[7,5,7,6,7,7,7,1],[7,4,7,6,7,7,7,1],[7,3,7,6,7,7,7,1],[7,7,7,5,7,7,7,1],[7,5,7,5,7,7,7,1],[7,4,7,5,7,7,7,1],[7,3,7,5,7,7,7,1],[7,7,7,3,7,7,7,1],[7,5,7,3,7,7,7,1],[7,4,7,3,7,7,7,1],[7,3,7,3,7,7,7,1],[7,7,7,2,7,7,7,1],[7,7,7,1,7,7,7,1],[7,7,7,7,6,7,7,1],[7,6,7,7,6,7,7,1],[7,4,7,7,6,7,7,1],[7,3,7,7,6,7,7,1],[7,7,5,7,6,7,7,1],[7,7,4,7,6,7,7,1],[7,7,2,7,6,7,7,1],[7,7,7,7,4,7,7,1],[7,6,7,7,4,7,7,1],[7,4,7,7,4,7,7,1],[7,3,7,7,4,7,7,1],[7,7,5,7,4,7,7,1],[7,7,4,7,4,7,7,1],[7,5,4,7,4,7,7,1],[7,7,2,7,4,7,7,1],[7,4,7,2,4,7,7,1],[7,7,7,7,3,7,7,1],[7,7,5,7,3,7,7,1],[7,7,4,7,3,7,7,1],[7,7,2,7,3,7,7,1],[7,7,7,7,2,7,7,1],[7,6,7,7,2,7,7,1],[7,4,7,7,2,7,7,1],[7,3,7,7,2,7,7,1],[7,7,7,7,1,7,7,1],[7,6,7,7,1,7,7,1],[7,4,7,7,1,7,7,1],[7,3,7,7,1,7,7,1],[7,7,7,7,7,5,7,1],[7,6,7,7,7,5,7,1],[7,5,7,7,7,5,7,1],[7,3,7,7,7,5,7,1],[7,7,6,7,7,5,7,1],[7,7,4,7,7,5,7,1],[7,7,2,7,7,5,7,1],[7,7,1,7,7,5,7,1],[7,7,7,5,7,5,7,1],[7,5,7,5,7,5,7,1],[7,3,7,5,7,5,7,1],[7,7,5,5,7,5,7,1],[7,6,5,5,7,5,7,1],[7,4,5,5,7,5,7,1],[7,7,7,3,7,5,7,1],[7,5,7,3,7,5,7,1],[7,3,7,3,7,5,7,1],[7,7,7,2,7,5,7,1],[7,7,7,1,7,5,7,1],[7,5,7,1,7,5,7,1],[7,7,7,7,7,4,7,1],[7,7,6,7,7,4,7,1],[7,7,4,7,7,4,7,1],[7,7,2,7,7,4,7,1],[7,7,1,7,7,4,7,1],[7,7,7,5,7,4,7,1],[7,7,7,3,7,4,7,1],[7,7,7,2,7,4,7,1],[7,7,7,1,7,4,7,1],[7,7,4,7,2,4,7,1],[7,7,7,7,7,3,7,1],[7,6,7,7,7,3,7,1],[7,5,7,7,7,3,7,1],[7,3,7,7,7,3,7,1],[7,7,7,5,7,3,7,1],[7,5,7,5,7,3,7,1],[7,3,7,5,7,3,7,1],[7,7,7,3,7,3,7,1],[7,5,7,3,7,3,7,1],[7,3,7,3,7,3,7,1],[7,7,7,2,7,3,7,1],[7,7,7,1,7,3,7,1],[7,5,7,1,7,3,7,1],[7,3,7,1,7,3,7,1],[7,3,7,7,3,3,7,1],[7,3,7,6,3,3,7,1],[7,3,7,2,3,3,7,1],[7,7,7,7,7,2,7,1],[7,6,7,7,7,2,7,1],[7,5,7,7,7,2,7,1],[7,3,7,7,7,2,7,1],[7,7,6,7,7,2,7,1],[7,7,4,7,7,2,7,1],[7,7,2,7,7,2,7,1],[7,4,2,7,7,2,7,1],[7,7,1,7,7,2,7,1],[7,7,2,7,2,2,7,1],[7,5,2,7,2,2,7,1],[7,4,2,7,2,2,7,1],[7,7,7,7,7,1,7,1],[7,6,7,7,7,1,7,1],[7,5,7,7,7,1,7,1],[7,3,7,7,7,1,7,1],[7,7,6,7,7,1,7,1],[7,7,4,7,7,1,7,1],[7,7,2,7,7,1,7,1],[7,7,1,7,7,1,7,1],[7,7,7,5,7,1,7,1],[7,5,7,5,7,1,7,1],[7,3,7,5,7,1,7,1],[7,7,7,3,7,1,7,1],[7,5,7,3,7,1,7,1],[7,3,7,3,7,1,7,1],[7,7,7,2,7,1,7,1],[7,7,7,1,7,1,7,1],[7,5,7,1,7,1,7,1],[7,3,7,1,7,1,7,1],[7,1,7,1,7,1,7,1],[5,1,5,1,5,1,5,1],[4,7,1,7,7,7,4,1],[4,7,1,7,7,5,4,1],[3,7,7,1,7,7,3,1],[3,7,3,1,3,7,3,1],[3,5,7,1,7,5,3,1],[3,5,3,1,3,5,3,1],[3,3,3,1,3,3,3,1],[3,1,3,1,3,1,3,1],[1,1,1,1,1,1,1,1],[0,0,0,0,0,0,0,0]]
9 -> 1049
10 -> 4304

Kasus terakhir dihitung oleh @HyperNeutrino

Wisaya Gandum
sumber
1
+1 untuk tantangan yang didokumentasikan dengan sangat baik meskipun saya masih belum sepenuhnya memahaminya.
ElPedro
@ ElPedro Apa yang masih Anda tidak yakin? Mungkin saya bisa membantu memperjelas pertanyaan ini.
Wheat Wizard

Jawaban:

7

Jelly , 18 17 byte

J_ịṙ1⁼
ṗṙ€RṂ€QÇ€S

Cobalah online!

Bagaimana itu bekerja

ṗṙ€RṂ€QÇ€S  Main link. Argument: n

ṗ           Cartesian power; yield all vectors of n elements of [1, ..., n].
   R        Range; yield [1, ..., n].
 ṙ€         Rotate each vector 1, ..., and n units to the left.
    Ṃ€      Take the minimum of each array of rotations of the same vector.
      Q     Unique; deduplicate the resulting array.
            Since each vector is replaced by its lexicographically minimal
            rotation, no resulting vector will be a rotation of another vector.
       ǀ   Map the helper link over the remaining vectors.
            Vectors that represent pointer sequences map to 1, others to 0.
         S  Take the sum.


J_ịṙ1⁼      Helper link. Argument: v = (v1, ..., vn)

J           Indices; yield [1, ..., n].
 _          Subtract v, yielding [1 - v1, ..., n - vn].
  ị         Index into v, yielding [v(1 - v1), ..., v(n - vn)].
   ṙ1       Rotate the result one unit to the left.
     ⁼      Compare the result with v.
Dennis
sumber
5

Python 2 , 162 156 152 146 143 byte

lambda n:len({min(l[i:]+l[:i]for i in R(n))for l in product(*[R(n)]*n)if all(l[-~i-n]==l[i-l[i]]for i in R(n))})
from itertools import*
R=range

Cobalah online!

Kurang lebih kekuatan kasar:

  • Menghasilkan semua permutasi product(r,repeat=n)
  • Periksa daftar yang valid. all(l[-~i-n]==l[i-l[i]]for i in r)
  • Menghasilkan seperangkat rotasi minimum (leksikografis) dari lits yang valid min(l[i:]+l[:i]for i in r)

Fungsi rekursif yang hubung singkat sedikit:

Versi ini lebih panjang, tetapi dapat menghitung f(10)dalam ~ 19 detik di tio.run

Di mesin saya, saya telah menemukan:

  • f(11) = 16920
  • f(12) = 78687

Python 2 , 209 byte

lambda n:len(g(n,(-1,)*n))
r=range
g=lambda n,a,j=0:set()if any(len({-1,a[-~i-n],a[i-a[i]]})>2for i in r(j))else set.union(*[g(n,a[:j]+(i,)+a[j+1:],j+1)for i in r(n)])if j<n else{min(a[i:]+a[:i]for i in r(n))}

Cobalah online!

Penjelasan:

f=lambda n:len(g(n,(-1,)*n)) #calls the recursive function, and gets length.
#The initial circle is all -1, and is built recursively
r=range
g=lambda n,a,j=0:
#if any of the indexes so far break the pointer rule (ignored if 'empty'), stop recursion.
if any(len({-1,a[-~i-n],a[i-a[i]]})>2for i in r(j))
    return set()
else
if j<n:
    #recursively call g with a+ all numbers in range ie.(a+[0], a+[1], ..)
    return set.union(*[g(n,a[:j]+(i,)+a[j+1:],j+1)for i in r(n)])
else # if recursion depth == n, we are done. Return the smallest (lexicographically) rotation.
    return {min(a[i:]+a[:i]for i in r(n))}
TFeld
sumber
Tentunya pengindeksan array Python berarti Anda dapat menjatuhkan %n(dan kemudian beberapa tanda kurung)?
Peter Taylor
143 byte .
Jonathan Frech
3

CJam, 37

ri:M_m*{:XM,Xfm<:e<=M{(_X=-X=}%X=&},,

Cobalah online

Cukup banyak kekuatan brutal, dan rasanya agak canggung. Menjadi sangat lambat setelah 6. Ganti koma terakhir dengan puntuk mencetak roda.

aditsu
sumber
3

Pyth, 28 byte

l{mS.>LdQf!fn@ThY@T-Y@TYUQ^U

Suite uji

Pertama, kami menghasilkan semua urutan panjang yang sesuai dengan elemen yang sesuai. Kedua, kami memeriksa apakah ada kegagalan pointer. Ketiga, peta ke semua rotasi yang diurutkan. Keempat, deduplikat dan hitung.

isaacg
sumber
3

Haskell , 117 112 104 byte

f k|x<-[1..k]=sum[1|y@(h:t)<-mapM(x<$f)x,t++[h]==[y!!mod(n-a)k|(n,a)<-zip x y],and[y<=drop n y++y|n<-x]]

Brute force, jadi sangat lambat untuk input besar. Cobalah online!

-5 byte terima kasih kepada Laikoni.

-5 byte berkat Ørjan Johansen.

Zgarb
sumber
and[y<=drop i y++take i y|i<-x]menghemat beberapa byte.
Laikoni
@Laikoni Jadi, terima kasih!
Zgarb
(1) x<$flebih pendek satu byte dari \_->x. (2) Berkat kemalasan, lebih n`drop`cycle yhemat 4 byte drop n y++take n y.
Ørjan Johansen
@ ØrjanJohansen Terima kasih, <$triknya bagus. drop n y++yternyata lebih pendek untuk petunjuk kedua.
Zgarb
Hm yang hampir tails, sehingga 4 lebih banyak dengan varian trik standar: all(y<=)$scanr(:)y y.
Ørjan Johansen