Runge Kutta
# RK-4 method python program
# function to be solved
def f(x,y):
return x+y
# or
# f = lambda x: x+y
# RK-4 method
def rk4(x0,y0,xn,n):
# Calculating step size
h = (xn-x0)/n
print('\n--------SOLUTION--------')
print('-------------------------')
print('x0\ty0\tyn')
print('-------------------------')
for i in range(n):
k1 = h * (f(x0, y0))
k2 = h * (f((x0+h/2), (y0+k1/2)))
k3 = h * (f((x0+h/2), (y0+k2/2)))
k4 = h * (f((x0+h), (y0+k3)))
k = (k1+2*k2+2*k3+k4)/6
yn = y0 + k
print('%.4f\t%.4f\t%.4f'% (x0,y0,yn) )
print('-------------------------')
y0 = yn
x0 = x0+h
print('\nAt x=%.4f, y=%.4f' %(xn,yn))
# Inputs
print('Enter initial conditions:')
x0 = float(input('x0 = '))
y0 = float(input('y0 = '))
print('Enter calculation point: ')
xn = float(input('xn = '))
print('Enter number of steps:')
step = int(input('Number of steps = '))
# RK4 method call
rk4(x0,y0,xn,step)
Elated Elephant