K berarti program algoritma EM di Python
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import sklearn.metrics as metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
names = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width', 'Class']
dataset = pd.read_csv("8-dataset.csv", names=names)
X = dataset.iloc[:, :-1]
label = {'Iris-setosa': 0,'Iris-versicolor': 1, 'Iris-virginica': 2}
y = [label[c] for c in dataset.iloc[:, -1]]
plt.figure(figsize=(14,7))
colormap=np.array(['red','lime','black'])
# REAL PLOT
plt.subplot(1,3,1)
plt.title('Real')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y])
# K-PLOT
model=KMeans(n_clusters=3, random_state=0).fit(X)
plt.subplot(1,3,2)
plt.title('KMeans')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[model.labels_])
print('The accuracy score of K-Mean: ',metrics.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean:\n',metrics.confusion_matrix(y, model.labels_))
# GMM PLOT
gmm=GaussianMixture(n_components=3, random_state=0).fit(X)
y_cluster_gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.title('GMM Classification')
plt.scatter(X.Petal_Length,X.Petal_Width,c=colormap[y_cluster_gmm])
print('The accuracy score of EM: ',metrics.accuracy_score(y, y_cluster_gmm))
print('The Confusion matrix of EM:\n ',metrics.confusion_matrix(y, y_cluster_gmm))
Fine Fox