Jarak Euclidean Tensorflow

def squared_dist(A, B):
  assert A.shape.as_list() == B.shape.as_list()

  row_norms_A = tf.reduce_sum(tf.square(A), axis=1)
  row_norms_A = tf.reshape(row_norms_A, [-1, 1])  # Column vector.

  row_norms_B = tf.reduce_sum(tf.square(B), axis=1)
  row_norms_B = tf.reshape(row_norms_B, [1, -1])  # Row vector.

  return row_norms_A - 2 * tf.matmul(A, tf.transpose(B)) + row_norms_B
Different Dove