Ini adalah spin-off dari pertanyaan ini: Bagaimana membandingkan dua kelompok dengan beberapa pengukuran untuk setiap individu dengan R?
Dalam jawaban di sana (jika saya mengerti dengan benar) saya belajar bahwa varians dalam subjek tidak mempengaruhi kesimpulan yang dibuat tentang mean kelompok dan tidak apa-apa untuk hanya mengambil rata-rata rata-rata untuk menghitung rata-rata grup, kemudian menghitung varians dalam-grup dan menggunakannya untuk melakukan tes signifikansi. Saya ingin menggunakan metode di mana semakin besar varians dalam subjek semakin kurang yakin saya tentang kelompok berarti atau mengerti mengapa tidak masuk akal untuk menginginkan itu.
Berikut adalah plot dari data asli bersama dengan beberapa data simulasi yang menggunakan sarana subjek yang sama, tetapi sampel pengukuran individu untuk setiap subjek dari distribusi normal menggunakan sarana tersebut dan varians dalam-subjek kecil (sd = .1). Seperti yang dapat dilihat, interval kepercayaan level grup (baris bawah) tidak terpengaruh oleh ini (setidaknya cara saya menghitungnya).
Saya juga menggunakan rjags untuk memperkirakan rata-rata kelompok dalam tiga cara. 1) Gunakan data asli asli 2) Gunakan hanya sarana Subjek 3) Gunakan data simulasi dengan sd dalam-subjek kecil
Hasilnya di bawah ini. Menggunakan metode ini kita melihat bahwa interval kredibel 95% lebih sempit dalam kasus # 2 dan # 3. Ini memenuhi intuisi saya tentang apa yang saya ingin terjadi ketika membuat kesimpulan tentang makna kelompok, tetapi saya tidak yakin apakah ini hanya beberapa artefak dari model saya atau properti interval yang kredibel.
Catatan. Untuk menggunakan rjags, Anda perlu menginstal JAGS dari sini: http://sourceforge.net/projects/mcmc-jags/files/
Berbagai kode di bawah ini.
Data asli:
structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6,
6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10,
10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12,
12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15,
15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18,
18, 18, 18, 18, 18, 2, 0, 16, 2, 16, 2, 8, 10, 8, 6, 4, 4, 8,
22, 12, 24, 16, 8, 24, 22, 6, 10, 10, 14, 8, 18, 8, 14, 8, 20,
6, 16, 6, 6, 16, 4, 2, 14, 12, 10, 4, 10, 10, 8, 4, 10, 16, 16,
2, 8, 4, 0, 0, 2, 16, 10, 16, 12, 14, 12, 8, 10, 12, 8, 14, 8,
12, 20, 8, 14, 2, 4, 8, 16, 10, 14, 8, 14, 12, 8, 14, 4, 8, 8,
10, 4, 8, 20, 8, 12, 12, 22, 14, 12, 26, 32, 22, 10, 16, 26,
20, 12, 16, 20, 18, 8, 10, 26), .Dim = c(108L, 3L), .Dimnames = list(
NULL, c("Group", "Subject", "Value")))
Dapatkan Subjek Berarti dan mensimulasikan data dengan varians dalam-subjek kecil:
#Get Subject Means
means<-aggregate(Value~Group+Subject, data=dat, FUN=mean)
#Initialize "dat2" dataframe
dat2<-dat
#Sample individual measurements for each subject
temp=NULL
for(i in 1:nrow(means)){
temp<-c(temp,rnorm(6,means[i,3], .1))
}
#Set Simulated values
dat2[,3]<-temp
Fungsi agar sesuai dengan model JAGS:
require(rjags)
#Jags fit function
jags.fit<-function(dat2){
#Create JAGS model
modelstring = "
model{
for(n in 1:Ndata){
y[n]~dnorm(mu[subj[n]],tau[subj[n]]) T(0, )
}
for(s in 1:Nsubj){
mu[s]~dnorm(muG,tauG) T(0, )
tau[s] ~ dgamma(5,5)
}
muG~dnorm(10,.01) T(0, )
tauG~dgamma(1,1)
}
"
writeLines(modelstring,con="model.txt")
#############
#Format Data
Ndata = nrow(dat2)
subj = as.integer( factor( dat2$Subject ,
levels=unique(dat2$Subject ) ) )
Nsubj = length(unique(subj))
y = as.numeric(dat2$Value)
dataList = list(
Ndata = Ndata ,
Nsubj = Nsubj ,
subj = subj ,
y = y
)
#Nodes to monitor
parameters=c("muG","tauG","mu","tau")
#MCMC Settings
adaptSteps = 1000
burnInSteps = 1000
nChains = 1
numSavedSteps= nChains*10000
thinSteps=20
nPerChain = ceiling( ( numSavedSteps * thinSteps ) / nChains )
#Create Model
jagsModel = jags.model( "model.txt" , data=dataList,
n.chains=nChains , n.adapt=adaptSteps , quiet=FALSE )
# Burn-in:
cat( "Burning in the MCMC chain...\n" )
update( jagsModel , n.iter=burnInSteps )
# Getting DIC data:
load.module("dic")
# The saved MCMC chain:
cat( "Sampling final MCMC chain...\n" )
codaSamples = coda.samples( jagsModel , variable.names=parameters ,
n.iter=nPerChain , thin=thinSteps )
mcmcChain = as.matrix( codaSamples )
result = list(codaSamples=codaSamples, mcmcChain=mcmcChain)
}
Sesuaikan model dengan setiap grup dari setiap dataset:
#Fit to raw data
groupA<-jags.fit(dat[which(dat[,1]==1),])
groupB<-jags.fit(dat[which(dat[,1]==2),])
groupC<-jags.fit(dat[which(dat[,1]==3),])
#Fit to subject mean data
groupA2<-jags.fit(means[which(means[,1]==1),])
groupB2<-jags.fit(means[which(means[,1]==2),])
groupC2<-jags.fit(means[which(means[,1]==3),])
#Fit to simulated raw data (within-subject sd=.1)
groupA3<-jags.fit(dat2[which(dat2[,1]==1),])
groupB3<-jags.fit(dat2[which(dat2[,1]==2),])
groupC3<-jags.fit(dat2[which(dat2[,1]==3),])
Interval kredibel / fungsi interval kepadatan tertinggi:
#HDI Function
get.HDI<-function(sampleVec,credMass){
sortedPts = sort( sampleVec )
ciIdxInc = floor( credMass * length( sortedPts ) )
nCIs = length( sortedPts ) - ciIdxInc
ciWidth = rep( 0 , nCIs )
for ( i in 1:nCIs ) {
ciWidth[ i ] = sortedPts[ i + ciIdxInc ] - sortedPts[ i ]
}
HDImin = sortedPts[ which.min( ciWidth ) ]
HDImax = sortedPts[ which.min( ciWidth ) + ciIdxInc ]
HDIlim = c( HDImin , HDImax, credMass )
return( HDIlim )
}
Plot pertama:
layout(matrix(c(1,1,2,2,3,4),nrow=3,ncol=2, byrow=T))
boxplot(dat[,3]~dat[,2],
xlab="Subject", ylab="Value", ylim=c(0, 1.2*max(dat[,3])),
col=c(rep("Red",length(which(dat[,1]==unique(dat[,1])[1]))/6),
rep("Green",length(which(dat[,1]==unique(dat[,1])[2]))/6),
rep("Blue",length(which(dat[,1]==unique(dat[,1])[3]))/6)
),
main="Original Data"
)
stripchart(dat[,3]~dat[,2], vert=T, add=T, pch=16)
legend("topleft", legend=c("Group A", "Group B", "Group C", "Individual Means +/- 95% CI"),
col=c("Red","Green","Blue", "Grey"), lwd=3, bty="n", pch=c(15),
pt.cex=c(rep(0.1,3),1),
ncol=3)
for(i in 1:length(unique(dat[,2]))){
m<-mean(examp[which(dat[,2]==unique(dat[,2])[i]),3])
ci<-t.test(dat[which(dat[,2]==unique(dat[,2])[i]),3])$conf.int[1:2]
points(i-.3,m, pch=15,cex=1.5, col="Grey")
segments(i-.3,
ci[1],i-.3,
ci[2], lwd=4, col="Grey"
)
}
boxplot(dat2[,3]~dat2[,2],
xlab="Subject", ylab="Value", ylim=c(0, 1.2*max(dat2[,3])),
col=c(rep("Red",length(which(dat2[,1]==unique(dat2[,1])[1]))/6),
rep("Green",length(which(dat2[,1]==unique(dat2[,1])[2]))/6),
rep("Blue",length(which(dat2[,1]==unique(dat2[,1])[3]))/6)
),
main=c("Simulated Data", "Same Subject Means but Within-Subject SD=.1")
)
stripchart(dat2[,3]~dat2[,2], vert=T, add=T, pch=16)
legend("topleft", legend=c("Group A", "Group B", "Group C", "Individual Means +/- 95% CI"),
col=c("Red","Green","Blue", "Grey"), lwd=3, bty="n", pch=c(15),
pt.cex=c(rep(0.1,3),1),
ncol=3)
for(i in 1:length(unique(dat2[,2]))){
m<-mean(examp[which(dat2[,2]==unique(dat2[,2])[i]),3])
ci<-t.test(dat2[which(dat2[,2]==unique(dat2[,2])[i]),3])$conf.int[1:2]
points(i-.3,m, pch=15,cex=1.5, col="Grey")
segments(i-.3,
ci[1],i-.3,
ci[2], lwd=4, col="Grey"
)
}
means<-aggregate(Value~Group+Subject, data=dat, FUN=mean)
boxplot(means[,3]~means[,1], col=c("Red","Green","Blue"),
ylim=c(0,1.2*max(means[,3])), ylab="Value", xlab="Group",
main="Original Data"
)
stripchart(means[,3]~means[,1], pch=16, vert=T, add=T)
for(i in 1:length(unique(means[,1]))){
m<-mean(means[which(means[,1]==unique(means[,1])[i]),3])
ci<-t.test(means[which(means[,1]==unique(means[,1])[i]),3])$conf.int[1:2]
points(i-.3,m, pch=15,cex=1.5, col="Grey")
segments(i-.3,
ci[1],i-.3,
ci[2], lwd=4, col="Grey"
)
}
legend("topleft", legend=c("Group Means +/- 95% CI"), bty="n", pch=15, lwd=3, col="Grey")
means2<-aggregate(Value~Group+Subject, data=dat2, FUN=mean)
boxplot(means2[,3]~means2[,1], col=c("Red","Green","Blue"),
ylim=c(0,1.2*max(means2[,3])), ylab="Value", xlab="Group",
main="Simulated Data Group Averages"
)
stripchart(means2[,3]~means2[,1], pch=16, vert=T, add=T)
for(i in 1:length(unique(means2[,1]))){
m<-mean(means[which(means2[,1]==unique(means2[,1])[i]),3])
ci<-t.test(means[which(means2[,1]==unique(means2[,1])[i]),3])$conf.int[1:2]
points(i-.3,m, pch=15,cex=1.5, col="Grey")
segments(i-.3,
ci[1],i-.3,
ci[2], lwd=4, col="Grey"
)
}
legend("topleft", legend=c("Group Means +/- 95% CI"), bty="n", pch=15, lwd=3, col="Grey")
Plot kedua:
layout(matrix(c(1,2,3,4,4,4,5,5,5,6,6,6),nrow=4,ncol=3, byrow=T))
#Plot priors
plot(seq(0,10,by=.01),dgamma(seq(0,10,by=.01),5,5), type="l", lwd=4,
xlab="Value", ylab="Density",
main="Prior on Within-Subject Precision"
)
plot(seq(0,10,by=.01),dgamma(seq(0,10,by=.01),1,1), type="l", lwd=4,
xlab="Value", ylab="Density",
main="Prior on Within-Group Precision"
)
plot(seq(0,300,by=.01),dnorm(seq(0,300,by=.01),10,100), type="l", lwd=4,
xlab="Value", ylab="Density",
main="Prior on Group Means"
)
#Set overall xmax value
x.max<-1.1*max(groupA$mcmcChain[,"muG"],groupB$mcmcChain[,"muG"],groupC$mcmcChain[,"muG"],
groupA2$mcmcChain[,"muG"],groupB2$mcmcChain[,"muG"],groupC2$mcmcChain[,"muG"],
groupA3$mcmcChain[,"muG"],groupB3$mcmcChain[,"muG"],groupC3$mcmcChain[,"muG"]
)
#Plot result for raw data
#Set ymax
y.max<-1.1*max(density(groupA$mcmcChain[,"muG"])$y,density(groupB$mcmcChain[,"muG"])$y,density(groupC$mcmcChain[,"muG"])$y)
plot(density(groupA$mcmcChain[,"muG"]),xlim=c(0,x.max),
ylim=c(-.1*y.max,y.max), lwd=3, col="Red",
main="Group Mean Estimates: Fit to Raw Data", xlab="Value"
)
lines(density(groupB$mcmcChain[,"muG"]), lwd=3, col="Green")
lines(density(groupC$mcmcChain[,"muG"]), lwd=3, col="Blue")
hdi<-get.HDI(groupA$mcmcChain[,"muG"], .95)
segments(hdi[1],-.033*y.max,hdi[2],-.033*y.max, lwd=3, col="Red")
hdi<-get.HDI(groupB$mcmcChain[,"muG"], .95)
segments(hdi[1],-.066*y.max,hdi[2],-.066*y.max, lwd=3, col="Green")
hdi<-get.HDI(groupC$mcmcChain[,"muG"], .95)
segments(hdi[1],-.099*y.max,hdi[2],-.099*y.max, lwd=3, col="Blue")
####
#Plot result for mean data
#x.max<-1.1*max(groupA2$mcmcChain[,"muG"],groupB2$mcmcChain[,"muG"],groupC2$mcmcChain[,"muG"])
y.max<-1.1*max(density(groupA2$mcmcChain[,"muG"])$y,density(groupB2$mcmcChain[,"muG"])$y,density(groupC2$mcmcChain[,"muG"])$y)
plot(density(groupA2$mcmcChain[,"muG"]),xlim=c(0,x.max),
ylim=c(-.1*y.max,y.max), lwd=3, col="Red",
main="Group Mean Estimates: Fit to Subject Means", xlab="Value"
)
lines(density(groupB2$mcmcChain[,"muG"]), lwd=3, col="Green")
lines(density(groupC2$mcmcChain[,"muG"]), lwd=3, col="Blue")
hdi<-get.HDI(groupA2$mcmcChain[,"muG"], .95)
segments(hdi[1],-.033*y.max,hdi[2],-.033*y.max, lwd=3, col="Red")
hdi<-get.HDI(groupB2$mcmcChain[,"muG"], .95)
segments(hdi[1],-.066*y.max,hdi[2],-.066*y.max, lwd=3, col="Green")
hdi<-get.HDI(groupC2$mcmcChain[,"muG"], .95)
segments(hdi[1],-.099*y.max,hdi[2],-.099*y.max, lwd=3, col="Blue")
####
#Plot result for simulated data
#Set ymax
#x.max<-1.1*max(groupA3$mcmcChain[,"muG"],groupB3$mcmcChain[,"muG"],groupC3$mcmcChain[,"muG"])
y.max<-1.1*max(density(groupA3$mcmcChain[,"muG"])$y,density(groupB3$mcmcChain[,"muG"])$y,density(groupC3$mcmcChain[,"muG"])$y)
plot(density(groupA3$mcmcChain[,"muG"]),xlim=c(0,x.max),
ylim=c(-.1*y.max,y.max), lwd=3, col="Red",
main=c("Group Mean Estimates: Fit to Simulated data", "(Within-Subject SD=0.1)"), xlab="Value"
)
lines(density(groupB3$mcmcChain[,"muG"]), lwd=3, col="Green")
lines(density(groupC3$mcmcChain[,"muG"]), lwd=3, col="Blue")
hdi<-get.HDI(groupA3$mcmcChain[,"muG"], .95)
segments(hdi[1],-.033*y.max,hdi[2],-.033*y.max, lwd=3, col="Red")
hdi<-get.HDI(groupB3$mcmcChain[,"muG"], .95)
segments(hdi[1],-.066*y.max,hdi[2],-.066*y.max, lwd=3, col="Green")
hdi<-get.HDI(groupC3$mcmcChain[,"muG"], .95)
segments(hdi[1],-.099*y.max,hdi[2],-.099*y.max, lwd=3, col="Blue")
Sunting dengan versi pribadi saya dari jawaban dari @ StéphaneLaurent
Saya menggunakan model yang ia gambarkan sebagai sampel dari distribusi normal dengan mean = 0, antara varians subjek = 1 dan dalam error subjek / varians = 0,1,1,10,100. Subset dari interval kepercayaan ditampilkan di panel kiri sementara distribusi lebarnya ditunjukkan oleh panel kanan yang sesuai. Ini meyakinkan saya bahwa dia 100% benar. Namun, saya masih bingung dengan contoh saya di atas tetapi akan menindaklanjutinya dengan pertanyaan baru yang lebih fokus.
Kode untuk simulasi dan grafik di atas:
dev.new()
par(mfrow=c(4,2))
num.sims<-10000
sigmaWvals<-c(.1,1,10,100)
muG<-0 #Grand Mean
sigma.between<-1 #Between Experiment sd
for(sigma.w in sigmaWvals){
sigma.within<-sigma.w #Within Experiment sd
out=matrix(nrow=num.sims,ncol=2)
for(i in 1:num.sims){
#Sample the three experiment means (mui, i=1:3)
mui<-rnorm(3,muG,sigma.between)
#Sample the three obersvations for each experiment (muij, i=1:3, j=1:3)
y1j<-rnorm(3,mui[1],sigma.within)
y2j<-rnorm(3,mui[2],sigma.within)
y3j<-rnorm(3,mui[3],sigma.within)
#Put results in data frame
d<-as.data.frame(cbind(
c(rep(1,3),rep(2,3),rep(3,3)),
c(y1j, y2j, y3j )
))
d[,1]<-as.factor(d[,1])
#Calculate means for each experiment
dmean<-aggregate(d[,2]~d[,1], data=d, FUN=mean)
#Add new confidence interval data to output
out[i,]<-t.test(dmean[,2])$conf.int[1:2]
}
#Calculate % of intervals that contained muG
cover<-matrix(nrow=nrow(out),ncol=1)
for(i in 1:nrow(out)){
cover[i]<-out[i,1]<muG & out[i,2]>muG
}
sub<-floor(seq(1,nrow(out),length=100))
plot(out[sub,1], ylim=c(min(out[sub,1]),max(out[sub,2])),
xlab="Simulation #", ylab="Value", xaxt="n",
main=c(paste("# of Sims=",num.sims),
paste("% CIs Including muG=",100*round(length(which(cover==T))/nrow(cover),3)))
)
axis(side=1, at=1:100, labels=sub)
points(out[sub,2])
cnt<-1
for(i in sub){
segments(cnt, out[i,1],cnt,out[i,2])
cnt<-cnt+1
}
abline(h=0, col="Red", lwd=3)
hist(out[,2]-out[,1], freq=F, xlab="Width of 95% CI",
main=c(paste("muG=", muG),
paste("Sigma Between=",sigma.between),
paste("Sigma Within=",sigma.within))
)
}
Jawaban:
Biarkan saya mengembangkan ide ini di sini. Model untuk pengamatan individu adalah
Dalam jawaban saya untuk pertanyaan pertama Anda , saya telah menyarankan Anda untuk mencatat bahwa seseorang mendapatkan model linear klasik (efek tetap) Gaussian untuk sarana subjeky¯ij∙ . Memang Anda bisa dengan mudah memeriksanya
Dan kemudian saya mengklaim bahwa untuk menarik kesimpulan tentangμi Anda cukup mempertimbangkan model linier klasik sederhana yang pengamatannya berarti subjek y¯ij∙ . Pembaruan 12/04/2014 : Beberapa contoh ide ini sekarang ditulis di blog saya: Mengurangi model untuk mendapatkan interval kepercayaan . Saya mendapat kesan bahwa ini selalu berhasil ketika kami rata-rata data di atas tingkat efek acak.
Seperti yang Anda lihat dari rumus kotak, varian dalamσ2w memainkan peran dalam model untuk sarana kelompok yang diamati.
sumber
lmer(Value~Group -1 + (1|Subject), dat)
lmer(Value~Group -1 + (1|Subject), dat2)
, di mana dat adalah data asli dan dat2 disimulasikan dengan varians dalam subjek yang kecil. Saya mendapatkan kesalahan standar yang sama.lmer
berurusan dengan model tanpa interecept. Pertahankan intersep untuk memastikan.lmer
model. Untuk model Anda dalam kasus tertentu dari desain seimbang ada beberapa metode kuadrat-terkecil yang tepat, tapi saya tidak tahu apakah mereka tersedia dalam beberapa paket.lsmeans
paket bersama denganpbkrtest
paket tersebut dapat memberikan interval kepercayaan yang baik.