Apakah ada yang tahu beberapa kode yang ditulis dengan baik (dalam Matlab atau R) untuk MCMC jump reversible? Lebih disukai aplikasi demo sederhana untuk memuji makalah tentang masalah ini, yang akan berguna dalam memahami prosesnya.
r
matlab
references
mcmc
Nick
sumber
sumber
Jawaban:
RJMCMC diperkenalkan oleh Peter Green dalam makalah tahun 1995 yang merupakan kutipan klasik. Dia menulis program Fortran yang disebut AutoRJ untuk RJMCMC otomatis; halamannya di tautan ini ke program C DavidMaster AutoMix . Ada daftar perangkat lunak yang tersedia secara bebas untuk berbagai algoritma RJMCMC pada Tabel 1 makalah 2005 oleh Scott Sisson . Pencarian Google juga menemukan beberapa pseudocode dari grup di Universitas Glasgow yang mungkin berguna dalam memahami prinsip-prinsip jika Anda ingin memprogramnya sendiri.
sumber
Buku Bayesian Analysis for Population Ecology oleh King et al. menjelaskan RJMCMC dalam konteks ekologi populasi. Saya menemukan deskripsi di sana sangat jelas dan mereka memberikan kode R di lampiran.
Buku ini juga memiliki halaman web terkait , tetapi beberapa kode yang ditemukan dalam buku tidak ada di situs web.
sumber
Cukup tambahkan satu detail ke jawaban @ onestop: Saya menemukan perangkat lunak C yang dirilis oleh Olivier Cappé (CT / RJ MCMC) sangat membantu untuk memahami algoritma MCMC lompat Reversibel (khususnya cara merancang probabilitas untuk kelahiran-kematian dan pemisahan). gabungkan gerakan). Tautan ke kode sumber adalah: http://perso.telecom-paristech.fr/~cappe/Code/CTRJ_mix/About/
sumber
Jailin Ai memberikan presentasi yang cukup bagus tentang RJ MCMC bersama-sama (meskipun sangat dekat dengan kertas asli Green) dengan kode R petugas sebagai bagian dari tesis masternya di Leeds. Juga memberikan contoh mendalam tentang masalah titik-perubahan, yang juga dimasukkan dalam makalah Green's 1995.
Temukan tesis dan kode di sini:
http://www1.maths.leeds.ac.uk/~voss/projects/2011-RJMCMC/
sumber
Nando de Freitas menyediakan demo tentang penggunaan algoritma MCMC jump reversible untuk estimasi parameter jaringan saraf. Model ini memperlakukan jumlah neuron, parameter model, parameter regularisasi dan parameter noise sebagai variabel acak untuk diperkirakan.
Kode dan penulisan tersedia di sini: http://www.cs.ubc.ca/~nando/software.html
sumber