Saya mengambil kursus Andrew Ng tentang Pembelajaran Mesin melalui Coursera . Untuk persamaan, superskrip digunakan sebagai pengganti subskrip. Misalnya, dalam persamaan berikut digunakan sebagai ganti :
Rupanya, ini adalah praktik umum. Pertanyaan saya adalah mengapa menggunakan superskrip, bukan subskrip? Superskrip sudah digunakan untuk eksponensial. Memang saya tampaknya dapat membedakan antara superskrip dan kasus penggunaan eksponensial dengan memperhatikan apakah tanda kurung ada atau tidak, tetapi tampaknya masih membingungkan.
machine-learning
notation
entpnerd
sumber
sumber
i
pengindeksan atas ukuran kumpulan data, atau elemen-elemen vektorx
? Jika yang pertama, itu benar-benar standar. Jika yang terakhir, itu sama sekali tidak standar. Dan alasan mengapa superskrip digunakan adalah karena kadang-kadang Anda ingin merujuk ke elemen vektor menggunakan subskrip.Jawaban:
Jika menunjukkan vektor x ∈ R m maka x i adalah notasi standar untuk koordinat ke- i dari x , yaitu x = ( x 1 , x 2 , … , x m ) ∈ R m .x x∈Rm xi i x
Jika Anda memiliki koleksi vektor seperti itu, bagaimana Anda menunjukkan vektor ke- i ? Anda tidak bisa menulis x i , ini memiliki arti standar lainnya. Jadi terkadang orang menulis x ( i )n i xi x(i) dan itu adalah saya percaya mengapa Andrew Ng melakukannya.
Yaitu
sumber
The use of super scripts as you have stated I believe is not very common in machine learning literature. I'd have to review Ng's course notes to confirm, but if he's putting that use there, I would say he would be origin of the proliferation of this notation. This is a possibility. Either way, not to be too unkind, but I don't think many of the online course students are publishing literature on machine learning, so this notation is not very common in the actual literature. After all, these are introductory courses in machine learning, not PhD level courses.
What is very common with super scripts is to denote the iteration of an algorithm using super scripts. For example, you could write an iteration of Newton's method as
whereH(θ(t)) is the Hessian and ∇θ(t) is the gradient.
(...yes this is not quite the best way to implement Newton's method due to the inversion of the Hessian matrix...)
Here,θ(t) represents the value of θ in the tth iteration. This is the most common (but certainly not only) use of super scripts that I am aware of.
EDIT: To clarify, in the original question, it appeared to suggest that in the ML notation,x(i) was equivalent to statistic's xi notation. In my answer, I state that this is not truly prevalent in ML literature. This is true. However, as pointed out by @amoeba, there is plenty of superscript notation in ML literature for data, but in these cases x(i) does not typically mean the ith observation of a single vector x .
sumber
=
or==
in most programming languages; it introduces a constraint or definition rather than an actual assignment or equality check.)In mathematics superscripts are used left and right depending on the field. The choice is always historical legacy, nothing more. Whoever first got into the field set the convention of using sub- or superscripts.
Two examples. Superscripts are used to denote derivatives:f(x)(n)
In tensor algebra both super and subscripts are used heavily for the same thing likeRii could mean i rows and j columns. It's quite expressive: Tki=RjiCkj
Also I remember using scripts before letters (prescripts) in Physics, e.g.ijBlk . I think it was with tensors.
Hence, the choice of superscripts by Ng is purely historical too. There's no real reason to use or not use them, or prefer them to subscripts. Actually, I believe that here ML people are using tensor notation. They definitely are well versed in the subject, e.g. see this paper.
sumber