Saat mempelajari interval kepercayaan berbasis bootstrap, saya pernah membaca pernyataan berikut:
Jika distribusi bootstrap miring ke kanan, interval kepercayaan berbasis bootstrap memasukkan koreksi untuk memindahkan titik akhir lebih jauh ke kanan; ini mungkin tampak berlawanan dengan intuisi, tetapi itu adalah tindakan yang benar.
Saya mencoba memahami logika yang mendasari pernyataan di atas.
confidence-interval
bootstrap
pengguna3269
sumber
sumber
Jawaban:
Pertanyaannya terkait dengan konstruksi dasar interval kepercayaan, dan ketika sampai pada bootstrap, jawabannya tergantung pada metode bootstrap mana yang digunakan.
Pertimbangkan setup adalah estimator dari parameter nyata dihargai θ dengan (perkiraan) standar deviasi se , maka standar 95% interval kepercayaan berdasarkan normal N ( θ , se 2 ) pendekatan yaitu θ ± 1,96 se . Selang kepercayaan ini diturunkan sebagai himpunan θ 's yang memenuhi z 1 ≤ θ - θ ≤ z 2 mana z 1 = - 1,96 seθ^ θ se N( θ , se2)
Jika distribusi sampel dari θ yang benar miring dibandingkan dengan pendekatan normal, apa maka tindakan yang tepat? Jika sarana kanan miring bahwa 97,5% kuantil untuk distribusi sampling adalah z 2 > 1,96 se , tindakan yang tepat adalah untuk memindahkan titik akhir kiri lanjut ke kiri. Artinya, jika kita tetap berpegang pada konstruksi standar di atas. Penggunaan standar bootstrap adalah untuk memperkirakan jumlah sampel dan kemudian menggunakannya sebagai ganti ± 1,96 se pada konstruksi di atas.θ^ z2> 1,96 se ± 1,96 se
Interval bootstrap BCa (bias dikoreksi dan dipercepat) seperti yang diperkenalkan oleh Efron, lihat misalnya Intervalensi Bootstrap kertas , memperbaiki sifat-sifat interval persentil. Saya hanya bisa menebak (dan google) kutipan posting OP, tapi mungkin BCa adalah konteks yang sesuai. Mengutip Diciccio dan Efron dari makalah yang disebutkan, halaman 193,
di mana (2.3) adalah definisi interval BCa. Kutipan yang diposting oleh OP dapat merujuk pada fakta bahwa BCa dapat menggeser interval kepercayaan dengan distribusi sampling miring kanan lebih jauh ke kanan. Sulit untuk mengatakan apakah ini adalah "tindakan yang benar" dalam arti umum, tetapi menurut Diciccio dan Efron itu benar dalam pengaturan di atas dalam arti menghasilkan interval kepercayaan dengan cakupan yang benar. Adanya transformasi monotonm sedikit rumit, meskipun.
sumber