lme4 atau kode paket R sumber terbuka lainnya setara dengan asreml-R

13

Saya ingin menyesuaikan model campuran menggunakan lme4, nlme, paket regresi baysian atau yang tersedia.

Model campuran dalam konvensi pengkodean Asreml-R

sebelum membahas secara spesifik, kami mungkin ingin memiliki detail tentang konvensi asreml-R, bagi mereka yang tidak terbiasa dengan kode ASREML.

y = Xτ + Zu + e ........................(1) ; 

model campuran biasa dengan, y menunjukkan vektor pengamatan n × 1, di mana τ adalah vektor p × 1 dari efek tetap, X adalah matriks desain n × p dari peringkat kolom penuh yang menghubungkan pengamatan dengan kombinasi yang tepat dari efek tetap , u adalah vektor q × 1 dari efek acak, Z adalah matriks desain n × q yang mengaitkan pengamatan dengan kombinasi yang tepat dari efek acak, dan e adalah vektor n × 1 dari kesalahan residu. Model (1) disebut model campuran linier atau model efek campuran linier. Diasumsikan

masukkan deskripsi gambar di sini

di mana matriks G dan R adalah fungsi dari parameter γ dan φ, masing-masing.

Parameter θ adalah parameter varians yang akan kita sebut sebagai parameter skala.

Dalam model efek campuran dengan lebih dari satu varians residual, timbul misalnya dalam analisis data dengan lebih dari satu bagian atau variate, parameter θ diikat menjadi satu. Dalam model efek campuran dengan varians residual tunggal maka θ sama dengan varians residual (σ2). Dalam hal ini R harus berupa matriks korelasi. Rincian lebih lanjut tentang model disediakan dalam manual Asreml (tautan) .

Struktur varians untuk kesalahan: Struktur R dan struktur Varians untuk efek acak: struktur G dapat ditentukan.

masukkan deskripsi gambar di sinimasukkan deskripsi gambar di sini

pemodelan varians dalam asreml () penting untuk memahami pembentukan struktur varians melalui produk langsung. Asumsi kuadrat terkecil yang biasa (dan default di asreml ()) adalah bahwa ini terdistribusi secara independen dan identik (IID). Namun, jika data berasal dari percobaan lapangan yang ditata dalam array persegi dari baris dengan c kolom, katakanlah, kita dapat mengatur residu sebagai matriks dan berpotensi mempertimbangkan bahwa mereka secara otomatis berkorelasi dalam baris dan kolom. Menulis residu sebagai vektor dalam urutan lapangan, yaitu, dengan mengurutkan baris residual dalam kolom (plot dalam blok) varians dari residual kemudian

masukkan deskripsi gambar di sini masukkan deskripsi gambar di siniadalah matriks korelasi untuk model baris (urutan r, parameter autokorelasi ½r) dan model kolom (urutan c, parameter autokorelasi ½c). Lebih khusus, struktur spasial autoregresif dua dimensi yang dapat dipisah (AR1 x AR1) kadang-kadang diasumsikan untuk kesalahan umum dalam analisis uji coba lapangan.

Contoh data:

nin89 berasal dari perpustakaan asreml-R, di mana berbagai varietas ditanam dalam replikasi / blok di bidang persegi panjang. Untuk mengontrol variabilitas tambahan dalam arah baris atau kolom, setiap plot direferensikan sebagai variabel Baris dan Kolom (desain kolom baris). Dengan demikian desain kolom baris ini dengan pemblokiran. Yield adalah variabel yang diukur.

Contoh model

Saya membutuhkan sesuatu yang setara dengan kode asreml-R:

Sintaks model sederhana akan terlihat seperti berikut:

 rcb.asr <- asreml(yield  Variety, random =  Replicate, data = nin89)  
 .....model 0

Model linier ditentukan dalam argumen tetap (wajib), acak (opsional) dan rcov (komponen kesalahan) sebagai objek rumus. Default adalah istilah kesalahan sederhana dan tidak perlu ditentukan secara formal untuk istilah kesalahan seperti dalam model 0 .

di sini variasi adalah efek tetap dan acak adalah ulangan (blok). Selain istilah acak dan tetap, kami dapat menentukan istilah kesalahan. Yang merupakan default dalam model ini 0. Komponen residual atau kesalahan model ditentukan dalam objek rumus melalui argumen rcov, lihat model berikut 1: 4.

Model1 berikut ini lebih kompleks di mana struktur G (acak) dan R (kesalahan) ditentukan.

Model 1:

data(nin89)


 # Model 1: RCB analysis with G and R structure
     rcb.asr <- asreml(yield ~ Variety, random = ~ idv(Replicate), 
      rcov = ~ idv(units), data = nin89)

Model ini setara dengan model 0 di atas, dan memperkenalkan penggunaan model varians G dan R. Di sini opsi acak dan rcov menentukan rumus acak dan rcov untuk secara eksplisit menentukan struktur G dan R. di mana idv () adalah fungsi model khusus di asreml () yang mengidentifikasi model varians. Ekspresi idv (units) secara eksplisit menetapkan matriks varians untuk e ke identitas yang diskalakan.

# Model 2: model spasial dua dimensi dengan korelasi satu arah

  sp.asr <- asreml(yield ~ Variety, rcov = ~ Column:ar1(Row), data = nin89)

unit eksperimental dari nin89 diindeks oleh Kolom dan Baris. Jadi kami mengharapkan variasi acak dalam dua arah - baris dan arah kolom dalam kasus ini. di mana ar1 () adalah fungsi khusus yang menentukan model varians autoregresif orde pertama untuk Row. Panggilan ini menentukan struktur spasial dua dimensi untuk kesalahan tetapi dengan korelasi spasial dalam arah baris saja. Model varians untuk Kolom adalah identitas (id ()) tetapi tidak perlu ditentukan secara formal karena ini adalah default.

# model 3: model spasial dua dimensi, struktur kesalahan di kedua arah

 sp.asr <- asreml(yield ~ Variety, rcov = ~ ar1(Column):ar1(Row),  
 data = nin89)
sp.asr <- asreml(yield ~ Variety, random = ~ units, 
 rcov = ~ ar1(Column):ar1(Row), data = nin89)

mirip dengan model 2 di atas, namun korelasinya dua arah - autoregresif.

Saya tidak yakin berapa banyak model ini mungkin dengan paket R open source. Sekalipun solusi salah satu dari model ini akan sangat membantu. Bahkan jika pertarungan +50 dapat merangsang untuk mengembangkan paket seperti itu akan sangat membantu!

Lihat MAYSaseen telah memberikan output dari setiap model dan data (sebagai jawaban) untuk perbandingan.

Suntingan: Berikut ini adalah saran yang saya terima di forum diskusi model campuran: "Anda mungkin melihat paket regresi dan tata ruang David Clifford. Yang pertama memungkinkan pemasangan model campuran (Gaussian) di mana Anda dapat menentukan struktur matriks kovarians dengan sangat fleksibel (misalnya, saya telah menggunakannya untuk data silsilah). Paket spatialCovariance menggunakan regresi untuk memberikan model yang lebih rumit daripada AR1xAR1, tetapi mungkin berlaku. Anda mungkin harus berkorespondensi dengan penulis tentang penerapannya pada masalah Anda yang sebenarnya. "

John
sumber
Saya cukup yakin bahwa model 2-4 tidak mungkin masuk lme4. Bisakah Anda (a) memberi tahu kami mengapa Anda perlu melakukan ini lme4daripada asreml-R(b) mempertimbangkan memposting di r-sig-mixed-modelsmana ada keahlian yang lebih relevan?
Ben Bolker
ide dasarnya adalah asreml-R memerlukan lisensi (setidaknya untuk pengguna negara maju), jika memungkinkan dalam lme4 atau paket model campuran lainnya yang akan lebih baik ...
John
Saya pikir ini tidak akan mudah. Saya pikir taruhan terbaik Anda mungkin untuk mendefinisikan baru corStructdalam nlme(untuk korelasi anisotropik) ... Ini akan membantu jika Anda dapat secara singkat menyatakan (dalam kata-kata atau persamaan) model statistik yang sesuai dengan pernyataan ASREML ini, karena kita tidak semua akrab dengan Sintaks ASREML ...
Ben Bolker
1
Berikut ini adalah komentar dalam kelompok model campuran: Anda mungkin melihat paket regresi dan spatialCovariance dari David Clifford. Yang pertama memungkinkan pemasangan model campuran (Gaussian) di mana Anda dapat menentukan struktur matriks kovarian dengan sangat fleksibel (misalnya, saya telah menggunakannya untuk data silsilah). Paket spatialCovariance menggunakan regresi untuk menyediakan model yang lebih rumit dari AR1xAR1, tetapi mungkin berlaku. Anda mungkin harus berkorespondensi dengan penulis tentang penerapannya pada masalah Anda.
John
1
jika saya mendapat kesempatan, saya akan mencoba untuk mengatasi sebanyak ini dari yang saya bisa, tetapi terus terang saya mungkin tidak sampai ke sana, saya punya banyak di piring saya. Melihat ke paket-paket yang disarankan David Clifford terdengar seperti ide bagus - mungkin Anda dapat menyelesaikan masalah Anda sendiri dengan cara itu ... Saya cukup yakin bahwa model 1 dapat dilakukan MCMCglmm, dan saya cukup yakin bahwa (selain yang spatialCovariancedisebutkan, yang saya tidak terbiasa dengan) satu-satunya cara untuk menyelesaikannya dalam R adalah dengan mendefinisikan baru corStructs - yang mungkin, tapi tidak sepele.
Ben Bolker

Jawaban:

4

Anda dapat menyesuaikan model ini dengan AD Model Builder. AD Model Builder adalah perangkat lunak gratis untuk membangun model nonlinier umum termasuk model efek acak nonlinier umum. Jadi misalnya Anda bisa cocok dengan model spasial binomial negatif di mana rata-rata dan lebih dispersi memiliki struktur ar (1) x ar (1). Saya membuat kode untuk contoh ini dan menyesuaikannya dengan data. Jika ada yang tertarik, mungkin lebih baik untuk membahas ini pada daftar di http://admb-project.org

Catatan: Ada versi R dari ADMB, tetapi fitur yang tersedia dalam paket R adalah bagian dari perangkat lunak ADMB yang berdiri sendiri.

Untuk contoh ini, lebih mudah untuk membuat file ASCII dengan data, membacanya ke dalam program ADMB, menjalankan program, dan kemudian membaca estimasi parameter dll kembali ke R untuk apa pun yang ingin Anda lakukan.

Anda harus memahami bahwa ADMB bukan kumpulan paket, melainkan bahasa untuk menulis perangkat lunak estimasi parameter nonlinier. Seperti yang saya katakan sebelumnya, lebih baik untuk membahas ini pada daftar ADMB di mana semua orang tahu tentang perangkat lunak. Setelah selesai dan Anda memahami modelnya, Anda dapat memposting hasilnya di sini. Namun di sini ada tautan ke kode ML dan REML yang saya kumpulkan untuk data gandum.

http://lists.admb-project.org/pipermail/users/attachments/20111124/448923c8/attachment.zip

dave fournier
sumber
Apakah ada interphase R untuk terhubung dengan AD Model Builder?
John
1

Model 0

ASReml-R

rcb0.asr <- asreml(yield~Variety, random=~Rep, data=nin89, na.method.X="include")
summary(rcb0.asr)
$call
asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89, 
    na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 7.041475

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"

summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

> anova(rcb0.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   12001.6        242.054    <2e-16 ***
Variety       55    2387.5         48.152    0.7317    
residual (MS)         49.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb0.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb0.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432659
Rep_3 -0.8712739
Rep_4 -3.8515918

lme4

> rcb0.lmer <- lmer(yield~Variety+(1|Rep), data=nin89)
> print(rcb0.lmer, corr=FALSE)
Linear mixed model fit by REML 
Formula: yield ~ Variety + (1 | Rep) 
   Data: nin89 
  AIC  BIC logLik deviance REMLdev
 1334 1532 -608.9     1456    1218
Random effects:
 Groups   Name        Variance Std.Dev.
 Rep      (Intercept)  9.8829  3.1437  
 Residual             49.5824  7.0415  
Number of obs: 224, groups: Rep, 4

Fixed effects:
                  Estimate Std. Error t value
(Intercept)        29.4375     3.8556   7.635
VarietyBRULE       -3.3625     4.9791  -0.675
VarietyBUCKSKIN    -3.8750     4.9791  -0.778
VarietyCENTURA     -7.7875     4.9791  -1.564
VarietyCENTURK78    0.8625     4.9791   0.173
VarietyCHEYENNE    -1.3750     4.9791  -0.276
VarietyCODY        -8.2250     4.9791  -1.652
VarietyCOLT        -2.4375     4.9791  -0.490
VarietyGAGE        -4.9250     4.9791  -0.989
VarietyHOMESTEAD   -1.8000     4.9791  -0.362
VarietyKS831374    -5.3125     4.9791  -1.067
VarietyLANCER      -0.8750     4.9791  -0.176
VarietyLANCOTA     -2.8875     4.9791  -0.580
VarietyNE83404     -2.0500     4.9791  -0.412
VarietyNE83406     -5.1625     4.9791  -1.037
VarietyNE83407     -6.7500     4.9791  -1.356
VarietyNE83432     -9.7125     4.9791  -1.951
VarietyNE83498      0.6875     4.9791   0.138
VarietyNE83T12     -7.8750     4.9791  -1.582
VarietyNE84557     -8.9125     4.9791  -1.790
VarietyNE85556     -3.0500     4.9791  -0.613
VarietyNE85623     -7.7125     4.9791  -1.549
VarietyNE86482     -5.1500     4.9791  -1.034
VarietyNE86501      1.5000     4.9791   0.301
VarietyNE86503      3.2125     4.9791   0.645
VarietyNE86507     -5.6500     4.9791  -1.135
VarietyNE86509     -2.5875     4.9791  -0.520
VarietyNE86527     -7.4250     4.9791  -1.491
VarietyNE86582     -4.9000     4.9791  -0.984
VarietyNE86606      0.3250     4.9791   0.065
VarietyNE86607     -0.1125     4.9791  -0.023
VarietyNE86T666    -7.9000     4.9791  -1.587
VarietyNE87403     -4.3125     4.9791  -0.866
VarietyNE87408     -3.1375     4.9791  -0.630
VarietyNE87409     -8.0625     4.9791  -1.619
VarietyNE87446     -1.7625     4.9791  -0.354
VarietyNE87451     -4.8250     4.9791  -0.969
VarietyNE87457     -5.5250     4.9791  -1.110
VarietyNE87463     -3.5250     4.9791  -0.708
VarietyNE87499     -9.0250     4.9791  -1.813
VarietyNE87512     -6.1875     4.9791  -1.243
VarietyNE87513     -2.6250     4.9791  -0.527
VarietyNE87522     -4.4375     4.9791  -0.891
VarietyNE87612     -7.6375     4.9791  -1.534
VarietyNE87613     -0.0375     4.9791  -0.008
VarietyNE87615     -3.7500     4.9791  -0.753
VarietyNE87619      1.8250     4.9791   0.367
VarietyNE87627     -6.2125     4.9791  -1.248
VarietyNORKAN      -5.0250     4.9791  -1.009
VarietyREDLAND      1.0625     4.9791   0.213
VarietyROUGHRIDER  -8.2500     4.9791  -1.657
VarietySCOUT66     -1.9125     4.9791  -0.384
VarietySIOUXLAND    0.6750     4.9791   0.136
VarietyTAM107      -1.0375     4.9791  -0.208
VarietyTAM200      -8.2000     4.9791  -1.647
VarietyVONA        -5.8375     4.9791  -1.172
> anova(rcb0.lmer)
Analysis of Variance Table
        Df Sum Sq Mean Sq F value
Variety 55 2387.5  43.409  0.8755
> fixef(rcb0.lmer)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lmer)
$Rep
  (Intercept)
1   1.8798700
2   2.8436747
3  -0.8713991
4  -3.8521455

Tidak

> rcb0.lme <- lme(yield~Variety, random=~1|Rep, data=na.omit(nin89))
> print(rcb0.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~1 | Rep
        (Intercept) Residual
StdDev:     3.14371 7.041475

Number of Observations: 224
Number of Groups: 4 
> anova(rcb0.lme)
            numDF denDF   F-value p-value
(Intercept)     1   165 242.05402  <.0001
Variety        55   165   0.87549  0.7119
> fixef(rcb0.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lme)
  (Intercept)
1   1.8795997
2   2.8432659
3  -0.8712739
4  -3.8515918
MYaseen208
sumber
1

Model 1

ASReml-R

> rcb.asr <- asreml(yield~Variety, random=~idv(Rep), rcov=~idv(units), data=nin89, na.method.X="include")
> summary(rcb.asr)
$call
asreml(fixed = yield ~ Variety, random = ~idv(Rep), rcov = ~idv(units), 
    data = nin89, na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 1

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var  9.882911  9.882911  8.792823 1.123975   Positive
R!variance   1.000000  1.000000        NA       NA      Fixed
R!units.var 49.582368 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"
> summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive
> anova(rcb.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   242.054        242.054    <2e-16 ***
Variety       55    48.152         48.152    0.7317    
residual (MS)        1.000                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432658
Rep_3 -0.8712738
Rep_4 -3.8515916

Tidak

Lihat triknya

> nin89$Int <- 1
> rcb.lme <- lme(yield~Variety, random=list(Int=pdIdent(~Rep-1)), data=na.omit(nin89))
> print(rcb.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~Rep - 1 | Int
 Structure: Multiple of an Identity
           Rep1    Rep2    Rep3    Rep4 Residual
StdDev: 3.14371 3.14371 3.14371 3.14371 7.041475

Number of Observations: 224
Number of Groups: 1 
> anova(rcb.lme)
            numDF denDF   F-value p-value
(Intercept)     1   168 242.05402  <.0001
Variety        55   168   0.87549  0.7121
> fixef(rcb.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb.lme)
    Rep1     Rep2       Rep3      Rep4
1 1.8796 2.843266 -0.8712739 -3.851592
MYaseen208
sumber
1

Model 2

ASReml-R

sp1.asr <- asreml(yield~Variety, rcov=~Column:ar1(Row), data=nin89, na.method.X="include")

> summary(sp1.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~Column:ar1(Row), data = nin89, 
    na.method.X = "include")

$loglik
[1] -408.1412

$nedf
[1] 168

$sigma
[1] 7.975127

$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp1.asr)$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained
> anova(sp1.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   24604.3         386.84 < 2.2e-16 ***
Variety       55    7974.4         125.38 2.048e-07 ***
residual (MS)         63.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp1.asr)$fixed
                        effect
Variety_ARAPAHOE     0.0000000
Variety_BRULE       -2.4048816
Variety_BUCKSKIN     7.8064972
Variety_CENTURA     -1.6997427
Variety_CENTURK78   -1.3829446
Variety_CHEYENNE    -1.1113084
Variety_CODY        -6.7461911
Variety_COLT        -1.7963394
Variety_GAGE        -3.4539524
Variety_HOMESTEAD   -5.5877510
Variety_KS831374    -0.8589476
Variety_LANCER      -2.8418476
Variety_LANCOTA     -5.9394801
Variety_NE83404     -3.4112613
Variety_NE83406     -1.9057358
Variety_NE83407     -3.2563922
Variety_NE83432     -5.4594311
Variety_NE83498      0.6446010
Variety_NE83T12     -4.0071361
Variety_NE84557     -4.2005181
Variety_NE85556      1.4836395
Variety_NE85623     -2.7617129
Variety_NE86482     -1.4309381
Variety_NE86501     -2.2287462
Variety_NE86503     -0.4557866
Variety_NE86507     -0.6983418
Variety_NE86509     -3.9215624
Variety_NE86527      0.5294386
Variety_NE86582     -5.4653632
Variety_NE86606     -0.7291575
Variety_NE86607     -0.1265536
Variety_NE86T666   -12.1437291
Variety_NE87403     -7.4623631
Variety_NE87408     -3.3586380
Variety_NE87409     -1.0360336
Variety_NE87446     -4.9030958
Variety_NE87451     -3.2836149
Variety_NE87457     -3.5244583
Variety_NE87463     -3.8427658
Variety_NE87499     -4.6298393
Variety_NE87512     -5.3760809
Variety_NE87513     -5.5656241
Variety_NE87522     -7.6500899
Variety_NE87612     -2.7225851
Variety_NE87613     -0.8793319
Variety_NE87615     -4.0089291
Variety_NE87619      0.7975626
Variety_NE87627    -10.1315147
Variety_NORKAN      -7.1804945
Variety_REDLAND      0.6753066
Variety_ROUGHRIDER  -0.9637487
Variety_SCOUT66      0.7088916
Variety_SIOUXLAND   -1.1998807
Variety_TAM107      -3.7160351
Variety_TAM200      -9.0340942
Variety_VONA        -2.7970689
(Intercept)         28.3487457

Tidak

Sedang mengerjakannya, namun belum menemukan jawabannya. Bisa jadi sesuatu seperti ini. Masih tidak tahu bagaimana hubungannya rcov=~Column:ar1(Row)dengannlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))
MYaseen208
sumber
1

Model 3

ASReml-R

sp2.asr <- asreml(yield~Variety, rcov=~ar1(Column):ar1(Row), data=nin89, na.method.X="include")

> summary(sp2.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~ar1(Column):ar1(Row), 
    data = nin89, na.method.X = "include")

$loglik
[1] -399.3238

$nedf
[1] 168

$sigma
[1] 6.978728

$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp2.asr)$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained
> anova(sp2.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   16165.6         331.93 < 2.2e-16 ***
Variety       55    5961.7         122.41 4.866e-07 ***
residual (MS)         48.7                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp2.asr)$fixed
                         effect
Variety_ARAPAHOE     0.00000000
Variety_BRULE        0.03029321
Variety_BUCKSKIN     8.89207227
Variety_CENTURA     -0.68979639
Variety_CENTURK78    0.16461970
Variety_CHEYENNE     0.50267820
Variety_CODY        -3.26960093
Variety_COLT        -0.51826695
Variety_GAGE        -0.95824999
Variety_HOMESTEAD   -4.57873078
Variety_KS831374     0.27843476
Variety_LANCER      -2.95379384
Variety_LANCOTA     -4.67006598
Variety_NE83404     -1.32290865
Variety_NE83406     -1.66351994
Variety_NE83407     -2.64471830
Variety_NE83432     -4.42828427
Variety_NE83498      1.80418738
Variety_NE83T12     -2.11789109
Variety_NE84557     -2.34685080
Variety_NE85556      2.78001120
Variety_NE85623     -1.42164134
Variety_NE86482     -1.63334029
Variety_NE86501     -2.94339063
Variety_NE86503     -0.95747374
Variety_NE86507      0.46223383
Variety_NE86509     -3.27166458
Variety_NE86527      1.86588098
Variety_NE86582     -3.87940069
Variety_NE86606      0.22753741
Variety_NE86607      0.60702026
Variety_NE86T666   -10.27005825
Variety_NE87403     -7.43945904
Variety_NE87408     -3.10433009
Variety_NE87409      1.29746980
Variety_NE87446     -4.15943316
Variety_NE87451     -1.85324718
Variety_NE87457     -2.31156727
Variety_NE87463     -4.47086114
Variety_NE87499     -1.85909637
Variety_NE87512     -4.06473578
Variety_NE87513     -3.99604937
Variety_NE87522     -5.52109215
Variety_NE87612     -1.95543098
Variety_NE87613     -0.83160454
Variety_NE87615     -1.92104271
Variety_NE87619      2.98322047
Variety_NE87627     -7.33205188
Variety_NORKAN      -5.78418023
Variety_REDLAND      1.75249392
Variety_ROUGHRIDER  -0.97736288
Variety_SCOUT66      2.13126094
Variety_SIOUXLAND   -2.54195346
Variety_TAM107      -1.59083563
Variety_TAM200      -6.54229161
Variety_VONA        -1.52728371
(Intercept)         27.04285175

Tidak

Sedang mengerjakannya, namun belum menemukan jawabannya. Bisa jadi sesuatu seperti ini. Masih tidak tahu bagaimana hubungannya rcov=~ar1(Column):ar1(Row)dengannlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

Saya tidak tahu cara menyesuaikan Model 2 dan 3 nlme. Saya sedang mengerjakannya dan akan memperbarui jawabannya ketika selesai. Tapi saya sudah memasukkan output dari ASReml-Runtuk Model 2 dan 3 untuk tujuan perbandingan. Kevin memiliki pengalaman yang baik dalam menganalisis model seperti itu dan Ben Bolker memiliki otoritas yang luar biasa pada Model Campuran. Saya berharap mereka dapat membantu kami di Model 2 dan 3.

MYaseen208
sumber