Menekan Notasi Ilmiah di Numpy Ketika Membuat Array Dari Daftar Bersarang

160

Saya memiliki daftar Python bersarang yang terlihat seperti berikut:

my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
 [9.55, 116, 189688622.37, 260332262.0, 1.97],
 [2.2, 768, 6004865.13, 5759960.98, 1.21],
 [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
 [1.91, 474, 44555062.72, 44555062.72, 0.41],
 [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
 [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
 [7.03, 116, 66252511.46, 81109291.0, 1.56],
 [6.52, 116, 47674230.76, 57686991.0, 1.43],
 [1.85, 623, 3002631.96, 2899484.08, 0.64],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
 [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

Saya kemudian mengimpor Numpy, dan mengatur opsi cetak ke (suppress=True). Ketika saya membuat sebuah array:

my_array = numpy.array(my_list)

Saya tidak bisa selama hidup saya menekan notasi ilmiah:

[[  3.74000000e+00   5.16200000e+03   1.36836288e+10   1.27833876e+10
    1.81000000e+00]
 [  9.55000000e+00   1.16000000e+02   1.89688622e+08   2.60332262e+08
    1.97000000e+00]
 [  2.20000000e+00   7.68000000e+02   6.00486513e+06   5.75996098e+06
    1.21000000e+00]
 [  3.74000000e+00   4.06200000e+03   3.26382212e+09   3.06686909e+09
    1.93000000e+00]
 [  1.91000000e+00   4.74000000e+02   4.45550627e+07   4.45550627e+07
    4.10000000e-01]
 [  5.80000000e+00   5.00600000e+03   8.25496892e+09   7.44678827e+09
    3.25000000e+00]
 [  4.50000000e+00   7.88700000e+03   3.00789716e+10   2.78149895e+10
    2.18000000e+00]
 [  7.03000000e+00   1.16000000e+02   6.62525115e+07   8.11092910e+07
    1.56000000e+00]
 [  6.52000000e+00   1.16000000e+02   4.76742308e+07   5.76869910e+07
    1.43000000e+00]
 [  1.85000000e+00   6.23000000e+02   3.00263196e+06   2.89948408e+06
    6.40000000e-01]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]
 [  1.37600000e+01   1.22700000e+03   1.73787414e+09   1.44651157e+09
    4.32000000e+00]]

Jika saya membuat array numpy sederhana secara langsung:

new_array = numpy.array([1.5, 4.65, 7.845])

Saya tidak punya masalah dan mencetak sebagai berikut:

[ 1.5    4.65   7.845]

Adakah yang tahu apa masalah saya?

donopj2
sumber
2
numpy.set_printoptionsmengontrol bagaimana array numpy dicetak. Namun, tidak ada pilihan untuk sepenuhnya menekan notasi ilmiah. Beralih karena Anda memiliki nilai mulai dari 1e-2 hingga 1e9. Jika Anda memiliki rentang yang lebih kecil, itu tidak akan menggunakan notasi ilmiah untuk menampilkannya. Namun, mengapa itu penting bagaimana mereka ditampilkan print? Jika Anda mencoba untuk menyimpannya, gunakan savetxt, dll.
Joe Kington
2
Tidak benar-benar apa yang Anda tanyakan, tetapi menggunakan numpy.round (bahkan dengan presisi tinggi) saya dapat menghapus notasi ilmiah yang tampak seperti 7.00000000e + 00 dalam matriks rekonstruksi SVD. Karena notasi ilmiah (?) Itu tidak akan menegaskan kesetaraan sebelumnya. Saya menyebutkannya karena np.set_printoptions (suppress = True) tidak berfungsi untuk memperbaiki masalah ini untuk saya.
BrechtDeMan

Jawaban:

261

Saya kira yang Anda butuhkan adalah np.set_printoptions(suppress=True), untuk detailnya lihat di sini: http://pythonquirks.blogspot.fr/2009/10/controlling-printing-in-numpy.html

Untuk dokumentasi numpy SciPy.org, yang mencakup semua parameter fungsi (tekan tidak dirinci dalam tautan di atas), lihat di sini: https://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html

wiswit
sumber
7
bisakah Anda setidaknya memberikan ringkasan tentang apa yang dilakukannya?
Charlie Parker
4
Dalam kasus saya ini masih menggunakan notasi ilmiah
lesolorzanov
2
@ZloySmiertniy, gunakan formatter seperti pada jawaban Eric di bawah ini. Saya menggunakan np.set_printoptions(formatter={'all':lambda x: str(x)})
nurp
37

Python Force-menekan semua notasi eksponensial saat mencetak ndarrays numpy, bertengkar pembenaran teks, pembulatan dan opsi cetak:

Berikut ini adalah penjelasan untuk apa yang sedang terjadi, gulir ke bawah untuk demo kode.

Melewati parameter suppress=Trueke fungsi set_printoptionshanya berfungsi untuk angka yang sesuai dengan ruang 8 karakter default yang dialokasikan untuk itu, seperti ini:

import numpy as np
np.set_printoptions(suppress=True) #prevent numpy exponential 
                                   #notation on print, default False

#            tiny     med  large
a = np.array([1.01e-5, 22, 1.2345678e7])  #notice how index 2 is 8 
                                          #digits wide

print(a)    #prints [ 0.0000101   22.     12345678. ]

Namun jika Anda memasukkan angka lebih dari 8 karakter, notasi eksponensial dikenakan lagi, seperti ini:

np.set_printoptions(suppress=True)

a = np.array([1.01e-5, 22, 1.2345678e10])    #notice how index 2 is 10
                                             #digits wide, too wide!

#exponential notation where we've told it not to!
print(a)    #prints [1.01000000e-005   2.20000000e+001   1.23456780e+10]

numpy memiliki pilihan antara memotong nomor Anda menjadi dua sehingga salah mengartikannya, atau memaksa notasi eksponensial, ia memilih yang terakhir.

Ini dia set_printoptions(formatter=...)penyelamat untuk menentukan opsi pencetakan dan pembulatan. Katakan set_printoptionsuntuk mencetak bare a float:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:f}'.format})

a = np.array([1.01e-5, 22, 1.2345678e30])  #notice how index 2 is 30
                                           #digits wide.  

#Ok good, no exponential notation in the large numbers:
print(a)  #prints [0.000010 22.000000 1234567799999999979944197226496.000000] 

Kami telah memaksa notasi eksponensial ditekan, tetapi tidak dibulatkan atau dibenarkan, jadi tentukan opsi pemformatan tambahan:

np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:0.2f}'.format})  #float, 2 units 
                                               #precision right, 0 on left

a = np.array([1.01e-5, 22, 1.2345678e30])   #notice how index 2 is 30
                                            #digits wide

print(a)  #prints [0.00 22.00 1234567799999999979944197226496.00]

Kelemahan untuk menekan paksa semua gagasan eksponensial dalam ndarrays adalah bahwa jika ndarray Anda mendapat nilai float yang sangat besar di dekat infinity, dan Anda mencetaknya, Anda akan terkutuk di wajah dengan halaman yang penuh angka.

Contoh lengkap Demo 1:

from pprint import pprint
import numpy as np
#chaotic python list of lists with very different numeric magnitudes
my_list = [[3.74, 5162, 13683628846.64, 12783387559.86, 1.81],
           [9.55, 116, 189688622.37, 260332262.0, 1.97],
           [2.2, 768, 6004865.13, 5759960.98, 1.21],
           [3.74, 4062, 3263822121.39, 3066869087.9, 1.93],
           [1.91, 474, 44555062.72, 44555062.72, 0.41],
           [5.8, 5006, 8254968918.1, 7446788272.74, 3.25],
           [4.5, 7887, 30078971595.46, 27814989471.31, 2.18],
           [7.03, 116, 66252511.46, 81109291.0, 1.56],
           [6.52, 116, 47674230.76, 57686991.0, 1.43],
           [1.85, 623, 3002631.96, 2899484.08, 0.64],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32],
           [13.76, 1227, 1737874137.5, 1446511574.32, 4.32]]

#convert python list of lists to numpy ndarray called my_array
my_array = np.array(my_list)

#This is a little recursive helper function converts all nested 
#ndarrays to python list of lists so that pretty printer knows what to do.
def arrayToList(arr):
    if type(arr) == type(np.array):
        #If the passed type is an ndarray then convert it to a list and
        #recursively convert all nested types
        return arrayToList(arr.tolist())
    else:
        #if item isn't an ndarray leave it as is.
        return arr

#suppress exponential notation, define an appropriate float formatter
#specify stdout line width and let pretty print do the work
np.set_printoptions(suppress=True,
   formatter={'float_kind':'{:16.3f}'.format}, linewidth=130)
pprint(arrayToList(my_array))

Cetakan:

array([[           3.740,         5162.000,  13683628846.640,  12783387559.860,            1.810],
       [           9.550,          116.000,    189688622.370,    260332262.000,            1.970],
       [           2.200,          768.000,      6004865.130,      5759960.980,            1.210],
       [           3.740,         4062.000,   3263822121.390,   3066869087.900,            1.930],
       [           1.910,          474.000,     44555062.720,     44555062.720,            0.410],
       [           5.800,         5006.000,   8254968918.100,   7446788272.740,            3.250],
       [           4.500,         7887.000,  30078971595.460,  27814989471.310,            2.180],
       [           7.030,          116.000,     66252511.460,     81109291.000,            1.560],
       [           6.520,          116.000,     47674230.760,     57686991.000,            1.430],
       [           1.850,          623.000,      3002631.960,      2899484.080,            0.640],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320],
       [          13.760,         1227.000,   1737874137.500,   1446511574.320,            4.320]])

Contoh lengkap Demo 2:

import numpy as np  
#chaotic python list of lists with very different numeric magnitudes 

#            very tiny      medium size            large sized
#            numbers        numbers                numbers

my_list = [[0.000000000074, 5162, 13683628846.64, 1.01e10, 1.81], 
           [1.000000000055,  116, 189688622.37, 260332262.0, 1.97], 
           [0.010000000022,  768, 6004865.13,   -99e13, 1.21], 
           [1.000000000074, 4062, 3263822121.39, 3066869087.9, 1.93], 
           [2.91,            474, 44555062.72, 44555062.72, 0.41], 
           [5,              5006, 8254968918.1, 7446788272.74, 3.25], 
           [0.01,           7887, 30078971595.46, 27814989471.31, 2.18], 
           [7.03,            116, 66252511.46, 81109291.0, 1.56], 
           [6.52,            116, 47674230.76, 57686991.0, 1.43], 
           [1.85,            623, 3002631.96, 2899484.08, 0.64], 
           [13.76,          1227, 1737874137.5, 1446511574.32, 4.32], 
           [13.76,          1337, 1737874137.5, 1446511574.32, 4.32]] 
import sys 
#convert python list of lists to numpy ndarray called my_array 
my_array = np.array(my_list) 
#following two lines do the same thing, showing that np.savetxt can 
#correctly handle python lists of lists and numpy 2D ndarrays. 
np.savetxt(sys.stdout, my_list, '%19.2f') 
np.savetxt(sys.stdout, my_array, '%19.2f') 

Cetakan:

 0.00             5162.00      13683628846.64      10100000000.00              1.81
 1.00              116.00        189688622.37        260332262.00              1.97
 0.01              768.00          6004865.13 -990000000000000.00              1.21
 1.00             4062.00       3263822121.39       3066869087.90              1.93
 2.91              474.00         44555062.72         44555062.72              0.41
 5.00             5006.00       8254968918.10       7446788272.74              3.25
 0.01             7887.00      30078971595.46      27814989471.31              2.18
 7.03              116.00         66252511.46         81109291.00              1.56
 6.52              116.00         47674230.76         57686991.00              1.43
 1.85              623.00          3002631.96          2899484.08              0.64
13.76             1227.00       1737874137.50       1446511574.32              4.32
13.76             1337.00       1737874137.50       1446511574.32              4.32
 0.00             5162.00      13683628846.64      10100000000.00              1.81
 1.00              116.00        189688622.37        260332262.00              1.97
 0.01              768.00          6004865.13 -990000000000000.00              1.21
 1.00             4062.00       3263822121.39       3066869087.90              1.93
 2.91              474.00         44555062.72         44555062.72              0.41
 5.00             5006.00       8254968918.10       7446788272.74              3.25
 0.01             7887.00      30078971595.46      27814989471.31              2.18
 7.03              116.00         66252511.46         81109291.00              1.56
 6.52              116.00         47674230.76         57686991.00              1.43
 1.85              623.00          3002631.96          2899484.08              0.64
13.76             1227.00       1737874137.50       1446511574.32              4.32
13.76             1337.00       1737874137.50       1446511574.32              4.32

Perhatikan bahwa pembulatan konsisten pada 2 unit presisi, dan notasi eksponensial ditekan dalam rentang yang sangat besar e+xdan sangat kecil e-x.

Eric Leschinski
sumber
22

untuk array 1D dan 2D Anda dapat menggunakan np.savetxt untuk mencetak menggunakan string format tertentu:

>>> import sys
>>> x = numpy.arange(20).reshape((4,5))
>>> numpy.savetxt(sys.stdout, x, '%5.2f')
 0.00  1.00  2.00  3.00  4.00
 5.00  6.00  7.00  8.00  9.00
10.00 11.00 12.00 13.00 14.00
15.00 16.00 17.00 18.00 19.00

Opsi Anda dengan numpy.set_printoptions atau numpy.array2string di v1.3 cukup kikuk dan terbatas (misalnya tidak ada cara untuk menekan notasi ilmiah untuk jumlah besar). Sepertinya ini akan berubah dengan versi yang akan datang, dengan numpy.set_printoptions (formatter = ..) dan numpy.array2string (style = ..).

lindyblackburn
sumber
0

Anda dapat menulis fungsi yang mengubah notasi ilmiah menjadi biasa, seperti

def sc2std(x):
    s = str(x)
    if 'e' in s:
        num,ex = s.split('e')
        if '-' in num:
            negprefix = '-'
        else:
            negprefix = ''
        num = num.replace('-','')
        if '.' in num:
            dotlocation = num.index('.')
        else:
            dotlocation = len(num)
        newdotlocation = dotlocation + int(ex)
        num = num.replace('.','')
        if (newdotlocation < 1):
            return negprefix+'0.'+'0'*(-newdotlocation)+num
        if (newdotlocation > len(num)):
            return negprefix+ num + '0'*(newdotlocation - len(num))+'.0'
        return negprefix + num[:newdotlocation] + '.' + num[newdotlocation:]
    else:
        return s
Amir
sumber