Bagaimana saya bisa membagi kolom dengan regex untuk memindahkan trailing CAPS ke kolom terpisah?

11

Saya mencoba untuk memecah kolom menggunakan regex, tetapi sepertinya tidak bisa mendapatkan pemisahan dengan benar. Saya mencoba untuk mengambil semua CAPS trailing dan memindahkannya ke kolom terpisah. Jadi saya mendapatkan semua CAPS yang 2-4 CAPS berturut-turut. Namun, itu hanya meninggalkan 'Name'kolom sementara 'Team'kolom kosong.

Ini kode saya:

import pandas as pd

url = "https://www.espn.com/nba/stats/player/_/table/offensive/sort/avgAssists/dir/desc"

df = pd.read_html(url)[0].join(pd.read_html(url)[1])
df[['Name','Team']] = df['Name'].str.split('[A-Z]{2,4}', expand=True)  

Saya ingin ini:

print(df.head(5).to_string())
   RK             Name POS  GP   MIN   PTS  FGM   FGA   FG%  3PM  3PA   3P%  FTM  FTA   FT%  REB   AST  STL  BLK   TO  DD2  TD3    PER
0   1  LeBron JamesLA  SF  35  35.1  24.9  9.6  19.7  48.6  2.0  6.0  33.8  3.7  5.5  67.7  7.9  11.0  1.3  0.5  3.7   28    9  26.10
1   2   Ricky RubioPHX  PG  30  32.0  13.6  4.9  11.9  41.3  1.2  3.7  31.8  2.6  3.1  83.7  4.6   9.3  1.3  0.2  2.5   12    1  16.40
2   3   Luka DoncicDAL  SF  32  32.8  29.7  9.6  20.2  47.5  3.1  9.4  33.1  7.3  9.1  80.5  9.7   8.9  1.2  0.2  4.2   22   11  31.74
3   4   Ben SimmonsPHIL  PG  36  35.4  14.9  6.1  10.8  56.3  0.1  0.1  40.0  2.7  4.6  59.0  7.5   8.6  2.2  0.7  3.6   19    3  19.49
4   5    Trae YoungATL  PG  34  35.1  28.9  9.3  20.8  44.8  3.5  9.4  37.5  6.7  7.9  85.0  4.3   8.4  1.2  0.1  4.8   11    1  23.47

untuk menjadi ini:

print(df.head(5).to_string())
   RK             Name    Team    POS  GP   MIN   PTS  FGM   FGA   FG%  3PM  3PA   3P%  FTM  FTA   FT%  REB   AST  STL  BLK   TO  DD2  TD3    PER
0   1  LeBron James        LA    SF  35  35.1  24.9  9.6  19.7  48.6  2.0  6.0  33.8  3.7  5.5  67.7  7.9  11.0  1.3  0.5  3.7   28    9  26.10
1   2   Ricky Rubio        PHX    PG  30  32.0  13.6  4.9  11.9  41.3  1.2  3.7  31.8  2.6  3.1  83.7  4.6   9.3  1.3  0.2  2.5   12    1  16.40
2   3   Luka Doncic        DAL    SF  32  32.8  29.7  9.6  20.2  47.5  3.1  9.4  33.1  7.3  9.1  80.5  9.7   8.9  1.2  0.2  4.2   22   11  31.74
3   4   Ben Simmons        PHIL    PG  36  35.4  14.9  6.1  10.8  56.3  0.1  0.1  40.0  2.7  4.6  59.0  7.5   8.6  2.2  0.7  3.6   19    3  19.49
4   5    Trae Young        ATL    PG  34  35.1  28.9  9.3  20.8  44.8  3.5  9.4  37.5  6.7  7.9  85.0  4.3   8.4  1.2  0.1  4.8   11    1  23.47
chitown88
sumber

Jawaban:

9

Anda dapat mengekstraksi data menjadi dua kolom dengan menggunakan regex seperti ^(.*?)([A-Z]+)$atau ^(.*[^A-Z])([A-Z]+)$:

df[['Name','Team']] = df['Name'].str.extract('^(.*?)([A-Z]+)$', expand=True)

Ini akan menjaga semuanya hingga karakter terakhir yang bukan huruf besar di Grup "Nama" dan huruf besar terakhir di Grup "Tim".

Lihat demo regex # 1 dan regex demo # 2

Detail

  • ^ - mulai dari sebuah string
  • (.*?)- Menangkap grup 1: nol atau lebih karakter apa pun selain karakter baris, sesedikit mungkin
    atau
  • (.*[^A-Z]) - ada nol atau lebih karakter selain karakter break line, sebanyak mungkin, hingga karakter terakhir yang bukan huruf ASCII (diberikan pola pertandingan yang sesuai) (perhatikan bahwa pola ini menunjukkan setidaknya ada 1 karakter sebelum huruf besar terakhir)
  • ([A-Z]+) - Menangkap grup 2: satu atau lebih huruf ASCII
  • $ - akhir string.
Wiktor Stribiżew
sumber
1

Saya telah membuat beberapa perubahan pada fungsi, Anda mungkin perlu menambahkan paket ulang.

Ini agak manual, Tapi saya harap ini sudah cukup. Semoga hari mu menyenangkan!

df_obj_skel = dict()
df_obj_skel['Name'] = list()
df_obj_skel['Team'] = list()
for index,row in df.iterrows():
    Name = row['Name']
    Findings = re.search('[A-Z]{2,4}$', Name)
    Refined_Team = Findings[0]
    Refined_Name = re.sub(Refined_Team + "$", "", Name)
    df_obj_skel['Team'].append(Refined_Team)
    df_obj_skel['Name'].append(Refined_Name)
df_final = pd.DataFrame(df_obj_skel)
print(df_final)
Tinggi Oktana
sumber