Java Stanford NLP: Bagian dari label Pidato?

172

Stanford NLP, demo'd di sini , memberikan output seperti ini:

Colorless/JJ green/JJ ideas/NNS sleep/VBP furiously/RB ./.

Apa arti dari tag Bagian Bicara? Saya tidak dapat menemukan daftar resmi. Apakah itu sistem Stanford sendiri, atau apakah mereka menggunakan tag universal? (Apa JJ, misalnya?)

Juga, ketika saya mengulangi kalimat, mencari kata benda, misalnya, saya akhirnya melakukan sesuatu seperti memeriksa untuk melihat apakah tag .contains('N'). Ini terasa sangat lemah. Apakah ada cara yang lebih baik untuk secara terprogram mencari bagian tertentu dari pembicaraan?

Nick Heiner
sumber
Ini mungkin nitpick, tetapi Anda harus menggunakan .starts_with('N')daripada contains, karena 'IN' dan 'VBN' juga mengandung 'N'. Dan itu mungkin cara terbaik untuk menemukan kata-kata yang menurut penandanya adalah kata benda.
Joseph

Jawaban:

276

Proyek Penn Treebank . Lihatlah ps tagging Bagian-of-speech .

JJ bersifat kata sifat. NNS adalah kata benda, jamak. VBP adalah kata kerja present tense. BPR adalah kata keterangan.

Itu untuk bahasa Inggris. Untuk Cina, itu Penn Chinese Treebank. Dan bagi orang Jerman itu adalah NEGRA corpus.

  1. CC Koordinasi hubungannya
  2. Nomor kardinal CD
  3. Penentu DT
  4. EX Eksistensial di sana
  5. FW Kata asing
  6. IN Preposisi atau bawahan konjungsi
  7. JJ Adjective
  8. JJR Adjective, komparatif
  9. JJS Adjektiva, superlatif
  10. Penanda item Daftar LS
  11. MD Modal
  12. NN Noun, singular atau massa
  13. NNS Noun, jamak
  14. NNP Proper noun, singular
  15. NNPS Proper noun, jamak
  16. Predeterminer PDT
  17. POS Posesif berakhir
  18. PRP Kata ganti orang
  19. PRP $ kata ganti posesif
  20. Adverb BPR
  21. Adverb RBR, komparatif
  22. Adverb RBS, superlatif
  23. Partikel RP
  24. Simbol SYM
  25. Untuk
  26. Interupsi UH
  27. VB Verb, bentuk dasar
  28. VBD Verb, past tense
  29. VBG Verb, gerund atau present participle
  30. VBN Verb, past participle
  31. VBP Verb, hadir tunggal non3 orang
  32. VBZ Verb, hadiah tunggal ke-3 tunggal
  33. Penentu WDT
  34. WP Whpronoun
  35. WP $ Possessive whpronoun
  36. WRB Whadverb
anno
sumber
Saran saya tentang edit untuk memperbaiki kekurangan dalam jawaban ini ditolak. Karena itu, harap lihat juga jawaban saya yang diposting di bawah ini yang berisi beberapa informasi yang hilang dari jawaban ini.
Jules
3
Apa itu LS ke 10?
Devavrata
3
"ke" harus istimewa. mendapat tag sendiri
quemeful
4
Referensi yang sangat bagus untuk ini adalah Daftar Erwin R. Komen dan Penjelasan Bagian dari Tag Pidato . Yang juga menarik adalah Penelitian Komen dalam Bahasa Inggris dan situs web
CoolHandLouis
1
Apakah tag yang digunakan di Stanford POS Tagger dan Penn Tree bank sama?
gokul_uf
113
Explanation of each tag from the documentation :

CC: conjunction, coordinating
    & 'n and both but either et for less minus neither nor or plus so
    therefore times v. versus vs. whether yet
CD: numeral, cardinal
    mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
    seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025
    fifteen 271,124 dozen quintillion DM2,000 ...
DT: determiner
    all an another any both del each either every half la many much nary
    neither no some such that the them these this those
EX: existential there
    there
FW: foreign word
    gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si vous
    lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte
    terram fiche oui corporis ...
IN: preposition or conjunction, subordinating
    astride among uppon whether out inside pro despite on by throughout
    below within for towards near behind atop around if like until below
    next into if beside ...
JJ: adjective or numeral, ordinal
    third ill-mannered pre-war regrettable oiled calamitous first separable
    ectoplasmic battery-powered participatory fourth still-to-be-named
    multilingual multi-disciplinary ...
JJR: adjective, comparative
    bleaker braver breezier briefer brighter brisker broader bumper busier
    calmer cheaper choosier cleaner clearer closer colder commoner costlier
    cozier creamier crunchier cuter ...
JJS: adjective, superlative
    calmest cheapest choicest classiest cleanest clearest closest commonest
    corniest costliest crassest creepiest crudest cutest darkest deadliest
    dearest deepest densest dinkiest ...
LS: list item marker
    A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-44005
    SP-44007 Second Third Three Two * a b c d first five four one six three
    two
MD: modal auxiliary
    can cannot could couldn't dare may might must need ought shall should
    shouldn't will would
NN: noun, common, singular or mass
    common-carrier cabbage knuckle-duster Casino afghan shed thermostat
    investment slide humour falloff slick wind hyena override subhumanity
    machinist ...
NNS: noun, common, plural
    undergraduates scotches bric-a-brac products bodyguards facets coasts
    divestitures storehouses designs clubs fragrances averages
    subjectivists apprehensions muses factory-jobs ...
NNP: noun, proper, singular
    Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos
    Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA
    Shannon A.K.C. Meltex Liverpool ...
NNPS: noun, proper, plural
    Americans Americas Amharas Amityvilles Amusements Anarcho-Syndicalists
    Andalusians Andes Andruses Angels Animals Anthony Antilles Antiques
    Apache Apaches Apocrypha ...
PDT: pre-determiner
    all both half many quite such sure this
POS: genitive marker
    ' 's
PRP: pronoun, personal
    hers herself him himself hisself it itself me myself one oneself ours
    ourselves ownself self she thee theirs them themselves they thou thy us
PRP$: pronoun, possessive
    her his mine my our ours their thy your
RB: adverb
    occasionally unabatingly maddeningly adventurously professedly
    stirringly prominently technologically magisterially predominately
    swiftly fiscally pitilessly ...
RBR: adverb, comparative
    further gloomier grander graver greater grimmer harder harsher
    healthier heavier higher however larger later leaner lengthier less-
    perfectly lesser lonelier longer louder lower more ...
RBS: adverb, superlative
    best biggest bluntest earliest farthest first furthest hardest
    heartiest highest largest least less most nearest second tightest worst
RP: particle
    aboard about across along apart around aside at away back before behind
    by crop down ever fast for forth from go high i.e. in into just later
    low more off on open out over per pie raising start teeth that through
    under unto up up-pp upon whole with you
SYM: symbol
    % & ' '' ''. ) ). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***
TO: "to" as preposition or infinitive marker
    to
UH: interjection
    Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen
    huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly
    man baby diddle hush sonuvabitch ...
VB: verb, base form
    ask assemble assess assign assume atone attention avoid bake balkanize
    bank begin behold believe bend benefit bevel beware bless boil bomb
    boost brace break bring broil brush build ...
VBD: verb, past tense
    dipped pleaded swiped regummed soaked tidied convened halted registered
    cushioned exacted snubbed strode aimed adopted belied figgered
    speculated wore appreciated contemplated ...
VBG: verb, present participle or gerund
    telegraphing stirring focusing angering judging stalling lactating
    hankerin' alleging veering capping approaching traveling besieging
    encrypting interrupting erasing wincing ...
VBN: verb, past participle
    multihulled dilapidated aerosolized chaired languished panelized used
    experimented flourished imitated reunifed factored condensed sheared
    unsettled primed dubbed desired ...
VBP: verb, present tense, not 3rd person singular
    predominate wrap resort sue twist spill cure lengthen brush terminate
    appear tend stray glisten obtain comprise detest tease attract
    emphasize mold postpone sever return wag ...
VBZ: verb, present tense, 3rd person singular
    bases reconstructs marks mixes displeases seals carps weaves snatches
    slumps stretches authorizes smolders pictures emerges stockpiles
    seduces fizzes uses bolsters slaps speaks pleads ...
WDT: WH-determiner
    that what whatever which whichever
WP: WH-pronoun
    that what whatever whatsoever which who whom whosoever
WP$: WH-pronoun, possessive
    whose
WRB: Wh-adverb
    how however whence whenever where whereby whereever wherein whereof why
vaichidrewar
sumber
2
bisakah Anda mengutip sumbernya?
David Portabella
bagaimana dengan tanda baca? misalnya, token ',' mendapat PoS ','. apakah ada daftar yang menyertakan PoS ini?
David Portabella
Bagaimana dengan PoS "-LRB-" untuk tanda '('?
David Portabella
34

Jawaban yang diterima di atas tidak memiliki informasi berikut:

Ada juga 9 tanda baca yang ditentukan (yang tidak tercantum dalam beberapa referensi, lihat di sini ). Ini adalah:

  1. #
  2. $
  3. '' (digunakan untuk semua bentuk kutipan penutupan)
  4. ((digunakan untuk semua bentuk kurung pembuka)
  5. ) (digunakan untuk semua bentuk kurung tutup)
  6. ,
  7. . (digunakan untuk semua tanda baca yang mengakhiri kalimat)
  8. : (digunakan untuk titik dua, titik koma, dan elips)
  9. `` (digunakan untuk semua bentuk kutipan pembuka)
Jules
sumber
17

Berikut adalah daftar tag yang lebih lengkap untuk Penn Treebank (diposting di sini untuk kelengkapan):

http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html

Ini juga termasuk tag untuk tingkat klausa dan frase.

Tingkat Klausa

- S
- SBAR
- SBARQ
- SINV
- SQ

Tingkat Frasa

- ADJP
- ADVP
- CONJP
- FRAG
- INTJ
- LST
- NAC
- NP
- NX
- PP
- PRN
- PRT
- QP
- RRC
- UCP
- VP
- WHADJP
- WHAVP
- WHNP
- WHPP
- X

(deskripsi dalam tautan)

Iulius Curt
sumber
2
Kamu tahu apa? Ini adalah daftar yang benar-benar dibutuhkan orang! Bukan hanya tag POS Penn Treebank karena itu hanya untuk kata
windweller
Bisakah Anda menambahkan deskripsi di sebelah singkatan?
Petrus Theron
12

Kalau-kalau Anda ingin kode itu ...

/**
 * Represents the English parts-of-speech, encoded using the
 * de facto <a href="http://www.cis.upenn.edu/~treebank/">Penn Treebank
 * Project</a> standard.
 * 
 * @see <a href="ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz">Penn Treebank Specification</a>
 */
public enum PartOfSpeech {
  ADJECTIVE( "JJ" ),
  ADJECTIVE_COMPARATIVE( ADJECTIVE + "R" ),
  ADJECTIVE_SUPERLATIVE( ADJECTIVE + "S" ),

  /* This category includes most words that end in -ly as well as degree
   * words like quite, too and very, posthead modi ers like enough and
   * indeed (as in good enough, very well indeed), and negative markers like
   * not, n't and never.
   */
  ADVERB( "RB" ),

  /* Adverbs with the comparative ending -er but without a strictly comparative
   * meaning, like <i>later</i> in <i>We can always come by later</i>, should
   * simply be tagged as RB.
   */
  ADVERB_COMPARATIVE( ADVERB + "R" ),
  ADVERB_SUPERLATIVE( ADVERB + "S" ),

  /* This category includes how, where, why, etc.
   */
  ADVERB_WH( "W" + ADVERB ),

  /* This category includes and, but, nor, or, yet (as in Y et it's cheap,
   * cheap yet good), as well as the mathematical operators plus, minus, less,
   * times (in the sense of "multiplied by") and over (in the sense of "divided
   * by"), when they are spelled out. <i>For</i> in the sense of "because" is
   * a coordinating conjunction (CC) rather than a subordinating conjunction.
   */
  CONJUNCTION_COORDINATING( "CC" ),
  CONJUNCTION_SUBORDINATING( "IN" ),
  CARDINAL_NUMBER( "CD" ),
  DETERMINER( "DT" ),

  /* This category includes which, as well as that when it is used as a
   * relative pronoun.
   */
  DETERMINER_WH( "W" + DETERMINER ),
  EXISTENTIAL_THERE( "EX" ),
  FOREIGN_WORD( "FW" ),

  LIST_ITEM_MARKER( "LS" ),

  NOUN( "NN" ),
  NOUN_PLURAL( NOUN + "S" ),
  NOUN_PROPER_SINGULAR( NOUN + "P" ),
  NOUN_PROPER_PLURAL( NOUN + "PS" ),

  PREDETERMINER( "PDT" ),
  POSSESSIVE_ENDING( "POS" ),

  PRONOUN_PERSONAL( "PRP" ),
  PRONOUN_POSSESSIVE( "PRP$" ),

  /* This category includes the wh-word whose.
   */
  PRONOUN_POSSESSIVE_WH( "WP$" ),

  /* This category includes what, who and whom.
   */
  PRONOUN_WH( "WP" ),

  PARTICLE( "RP" ),

  /* This tag should be used for mathematical, scientific and technical symbols
   * or expressions that aren't English words. It should not used for any and
   * all technical expressions. For instance, the names of chemicals, units of
   * measurements (including abbreviations thereof) and the like should be
   * tagged as nouns.
   */
  SYMBOL( "SYM" ),
  TO( "TO" ),

  /* This category includes my (as in M y, what a gorgeous day), oh, please,
   * see (as in See, it's like this), uh, well and yes, among others.
   */
  INTERJECTION( "UH" ),

  VERB( "VB" ),
  VERB_PAST_TENSE( VERB + "D" ),
  VERB_PARTICIPLE_PRESENT( VERB + "G" ),
  VERB_PARTICIPLE_PAST( VERB + "N" ),
  VERB_SINGULAR_PRESENT_NONTHIRD_PERSON( VERB + "P" ),
  VERB_SINGULAR_PRESENT_THIRD_PERSON( VERB + "Z" ),

  /* This category includes all verbs that don't take an -s ending in the
   * third person singular present: can, could, (dare), may, might, must,
   * ought, shall, should, will, would.
   */
  VERB_MODAL( "MD" ),

  /* Stanford.
   */
  SENTENCE_TERMINATOR( "." );

  private final String tag;

  private PartOfSpeech( String tag ) {
    this.tag = tag;
  }

  /**
   * Returns the encoding for this part-of-speech.
   * 
   * @return A string representing a Penn Treebank encoding for an English
   * part-of-speech.
   */
  public String toString() {
    return getTag();
  }

  protected String getTag() {
    return this.tag;
  }

  public static PartOfSpeech get( String value ) {
    for( PartOfSpeech v : values() ) {
      if( value.equals( v.getTag() ) ) {
        return v;
      }
    }

    throw new IllegalArgumentException( "Unknown part of speech: '" + value + "'." );
  }
}
Dave Jarvis
sumber
7

Saya menyediakan seluruh daftar di sini dan juga memberikan tautan referensi

1.  CC   Coordinating conjunction
2.  CD   Cardinal number
3.  DT   Determiner
4.  EX   Existential there
5.  FW   Foreign word
6.  IN   Preposition or subordinating conjunction
7.  JJ   Adjective
8.  JJR  Adjective, comparative
9.  JJS  Adjective, superlative
10. LS   List item marker
11. MD   Modal
12. NN   Noun, singular or mass
13. NNS  Noun, plural
14. NNP  Proper noun, singular
15. NNPS Proper noun, plural
16. PDT  Predeterminer
17. POS  Possessive ending
18. PRP  Personal pronoun
19. PRP$ Possessive pronoun
20. RB   Adverb
21. RBR  Adverb, comparative
22. RBS  Adverb, superlative
23. RP   Particle
24. SYM  Symbol
25. TO   to
26. UH   Interjection
27. VB   Verb, base form
28. VBD  Verb, past tense
29. VBG  Verb, gerund or present participle
30. VBN  Verb, past participle
31. VBP  Verb, non-3rd person singular present
32. VBZ  Verb, 3rd person singular present
33. WDT  Wh-determiner
34. WP   Wh-pronoun
35. WP$  Possessive wh-pronoun
36. WRB  Wh-adverb

Anda dapat mengetahui seluruh daftar tag Parts of Speech di sini .

Sri
sumber
4

Mengenai pertanyaan kedua Anda untuk menemukan POS / tag khusus (mis., Kata benda), berikut adalah contoh kode yang dapat Anda ikuti.

public static void main(String[] args) {
    Properties properties = new Properties();
    properties.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse");
    StanfordCoreNLP pipeline = new StanfordCoreNLP(properties);

    String input = "Colorless green ideas sleep furiously.";
    Annotation annotation = pipeline.process(input);
    List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
    List<String> output = new ArrayList<>();
    String regex = "([{pos:/NN|NNS|NNP/}])"; //Noun
    for (CoreMap sentence : sentences) {
        List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class);
        TokenSequencePattern pattern = TokenSequencePattern.compile(regex);
        TokenSequenceMatcher matcher = pattern.getMatcher(tokens);
        while (matcher.find()) {
            output.add(matcher.group());
        }
    }
    System.out.println("Input: "+input);
    System.out.println("Output: "+output);
}

Outputnya adalah:

Input: Colorless green ideas sleep furiously.
Output: [ideas]
Ashok Kumar Pant
sumber
2

Tampaknya itu adalah label Brown Corpus .

Jonathan Feinberg
sumber
14
Tidak, itu adalah tag POS Penn English Treebank, yang merupakan penyederhanaan dari set tag Brown Corpus.
Christopher Manning
Apakah kamu yakin Contoh yang dikutip di atas termasuk tag "." yang didefinisikan dalam Brown Corpus, tetapi tidak ditentukan oleh daftar tag Penn Treebank di atas, sehingga tampaknya cukup yakin bahwa paling tidak jawabannya tidak sesederhana mereka hanya tag Penn Treebank.
Jules
Setelah melakukan penelitian tambahan, tampaknya itu adalah tag Penn Treebank, tetapi dokumentasi yang dikutip di atas pada tag tersebut tidak lengkap: Tag Penn Treebank juga menyertakan 9 tag tanda baca yang telah dihilangkan dari daftar dalam jawaban yang diterima. Lihat jawaban tambahan saya untuk lebih jelasnya.
Jules
2

Stanford CoreNLP Tags untuk Bahasa Lain: Prancis, Spanyol, Jerman ...

Saya melihat Anda menggunakan parser untuk bahasa Inggris, yang merupakan model default. Anda dapat menggunakan parser untuk bahasa lain (Prancis, Spanyol, Jerman ...) dan, perlu diketahui, baik tokenizer maupun bagian dari penandaan ucapan berbeda untuk setiap bahasa. Jika Anda ingin melakukan itu, Anda harus mengunduh model spesifik untuk bahasa tersebut (menggunakan builder seperti Maven misalnya) dan kemudian mengatur model yang ingin Anda gunakan. Di sini Anda memiliki informasi lebih lanjut tentang itu.

Di sini Anda adalah daftar tag untuk berbagai bahasa:

  1. Stanford CoreNLP POS Tag untuk bahasa Spanyol
  2. Stanford CoreNLP POS Tagger untuk Jerman menggunakan Stuttgart-Tübingen Tag Set (STTS)
  3. Tag tagger Stanford CoreNLP untuk Bahasa Prancis menggunakan tag berikut:

TAG UNTUK FRENCH:

Bagian dari Tag Pidato untuk Bahasa Prancis

A     (adjective)
Adv   (adverb)
CC    (coordinating conjunction)
Cl    (weak clitic pronoun)
CS    (subordinating conjunction)
D     (determiner)
ET    (foreign word)
I     (interjection)
NC    (common noun)
NP    (proper noun)
P     (preposition)
PREF  (prefix)
PRO   (strong pronoun)
V     (verb)
PONCT (punctuation mark)

Kategori Phrasal Tags untuk Perancis:

AP     (adjectival phrases)
AdP    (adverbial phrases)
COORD  (coordinated phrases)
NP     (noun phrases)
PP     (prepositional phrases)
VN     (verbal nucleus)
VPinf  (infinitive clauses)
VPpart (nonfinite clauses)
SENT   (sentences)
Sint, Srel, Ssub (finite clauses)

Fungsi Sintaksis untuk Bahasa Prancis:

SUJ    (subject)
OBJ    (direct object)
ATS    (predicative complement of a subject)
ATO    (predicative complement of a direct object)
MOD    (modifier or adjunct)
A-OBJ  (indirect complement introduced by à)
DE-OBJ (indirect complement introduced by de)
P-OBJ  (indirect complement introduced by another preposition)
Catalina Chircu
sumber
@AMArostegui: Terima kasih atas petunjuknya. Silakan bagikan tautan yang secara tegas disebutkan bahwa dependensi Universal digunakan untuk bahasa Spanyol. Tautan ini untuk UD tetapi tidak ada petunjuk bahwa mereka sebenarnya digunakan untuk bahasa Spanyol di Stanfoird Core NLP dan dokumentasi resmi Stanford tidak menyebutkannya juga.
Catalina Chircu
0

Dalam spacy itu sangat cepat saya pikir, hanya di notebook low-end akan berjalan seperti ini:

import spacy
import time

start = time.time()

with open('d:/dictionary/e-store.txt') as f:
    input = f.read()

word = 0
result = []

nlp = spacy.load("en_core_web_sm")
doc = nlp(input)

for token in doc:
    if token.pos_ == "NOUN":
        result.append(token.text)
    word += 1

elapsed = time.time() - start

print("From", word, "words, there is", len(result), "NOUN found in", elapsed, "seconds")

Output dalam beberapa percobaan:

From 3547 words, there is 913 NOUN found in 7.768507719039917 seconds
From 3547 words, there is 913 NOUN found in 7.408619403839111 seconds
From 3547 words, there is 913 NOUN found in 7.431427955627441 seconds

Jadi, saya pikir Anda tidak perlu khawatir tentang perulangan untuk setiap pemeriksaan tag POS :)

Lebih banyak perbaikan yang saya dapatkan ketika menonaktifkan pipa tertentu:

nlp = spacy.load("en_core_web_sm", disable = 'ner')

Jadi, hasilnya lebih cepat:

From 3547 words, there is 913 NOUN found in 6.212834596633911 seconds
From 3547 words, there is 913 NOUN found in 6.257707595825195 seconds
From 3547 words, there is 913 NOUN found in 6.371225833892822 seconds
Syauqi Haris
sumber