Apakah python memiliki daftar yang tidak dapat diubah?
Misalkan saya ingin memiliki fungsionalitas dari kumpulan elemen yang teratur, tetapi yang ingin saya jamin tidak akan berubah, bagaimana ini dapat diterapkan? Daftar diurutkan tetapi dapat dimutasi.
python
list
tuples
immutability
cammil
sumber
sumber
Jawaban:
Iya. Ini disebut a
tuple
.Jadi, selain
[1,2]
yang merupakan alist
dan mana yang dapat dimutasi,(1,2)
adalah atuple
dan tidak bisa.Informasi lebih lanjut:
Satu elemen
tuple
tidak dapat dibuat dengan menulis(1)
, sebagai gantinya, Anda perlu menulis(1,)
. Ini karena interpreter memiliki berbagai kegunaan lain untuk tanda kurung.Anda juga dapat menghilangkan tanda kurung sama sekali:
1,2
sama dengan(1,2)
Perhatikan bahwa tupel tidak persis daftar kekal. Klik di sini untuk membaca lebih lanjut tentang perbedaan antara list dan tuple
sumber
([1,2],3)
), tupel tidak lagi benar-benar tidak dapat diubah, karena objek daftar hanyalah penunjuk ke objek yang dapat berubah, dan sementara penunjuk tidak dapat diubah, objek yang direferensikan tidak.()
. Itulah salah satu kasus di mana tanda kurung diperlukan.(3,4,5)
memiliki tipe yang sangat berbeda—(int x int x int)
—daripada[3,4,5]
, yang memiliki tipe(listof int)
. Namun, tupel python benar-benar tampak lebih dekat ke daftar yang tidak dapat diubah: khususnya, mereka dapat diulangi, dan tampaknya mereka juga dapat disaring dan dipetakan.Berikut adalah implementasi ImmutableList. Daftar yang mendasari tidak terekspos di anggota data langsung mana pun. Tetap saja, itu bisa diakses menggunakan properti closure dari fungsi anggota. Jika kita mengikuti konvensi untuk tidak mengubah konten closure menggunakan properti di atas, implementasi ini akan memenuhi tujuan. Instance dari kelas ImmutableList ini dapat digunakan di mana saja yang diharapkan daftar python normal.
from functools import reduce __author__ = 'hareesh' class ImmutableList: """ An unmodifiable List class which uses a closure to wrap the original list. Since nothing is truly private in python, even closures can be accessed and modified using the __closure__ member of a function. As, long as this is not done by the client, this can be considered as an unmodifiable list. This is a wrapper around the python list class which is passed in the constructor while creating an instance of this class. The second optional argument to the constructor 'copy_input_list' specifies whether to make a copy of the input list and use it to create the immutable list. To make the list truly immutable, this has to be set to True. The default value is False, which makes this a mere wrapper around the input list. In scenarios where the input list handle is not available to other pieces of code, for modification, this approach is fine. (E.g., scenarios where the input list is created as a local variable within a function OR it is a part of a library for which there is no public API to get a handle to the list). The instance of this class can be used in almost all scenarios where a normal python list can be used. For eg: 01. It can be used in a for loop 02. It can be used to access elements by index i.e. immList[i] 03. It can be clubbed with other python lists and immutable lists. If lst is a python list and imm is an immutable list, the following can be performed to get a clubbed list: ret_list = lst + imm ret_list = imm + lst ret_list = imm + imm 04. It can be multiplied by an integer to increase the size (imm * 4 or 4 * imm) 05. It can be used in the slicing operator to extract sub lists (imm[3:4] or imm[:3] or imm[4:]) 06. The len method can be used to get the length of the immutable list. 07. It can be compared with other immutable and python lists using the >, <, ==, <=, >= and != operators. 08. Existence of an element can be checked with 'in' clause as in the case of normal python lists. (e.g. '2' in imm) 09. The copy, count and index methods behave in the same manner as python lists. 10. The str() method can be used to print a string representation of the list similar to the python list. """ @staticmethod def _list_append(lst, val): """ Private utility method used to append a value to an existing list and return the list itself (so that it can be used in funcutils.reduce method for chained invocations. @param lst: List to which value is to be appended @param val: The value to append to the list @return: The input list with an extra element added at the end. """ lst.append(val) return lst @staticmethod def _methods_impl(lst, func_id, *args): """ This static private method is where all the delegate methods are implemented. This function should be invoked with reference to the input list, the function id and other arguments required to invoke the function @param list: The list that the Immutable list wraps. @param func_id: should be the key of one of the functions listed in the 'functions' dictionary, within the method. @param args: Arguments required to execute the function. Can be empty @return: The execution result of the function specified by the func_id """ # returns iterator of the wrapped list, so that for loop and other # functions relying on the iterable interface can work. _il_iter = lambda: lst.__iter__() _il_get_item = lambda: lst[args[0]] # index access method. _il_len = lambda: len(lst) # length of the list _il_str = lambda: lst.__str__() # string function # Following represent the >, < , >=, <=, ==, != operators. _il_gt = lambda: lst.__gt__(args[0]) _il_lt = lambda: lst.__lt__(args[0]) _il_ge = lambda: lst.__ge__(args[0]) _il_le = lambda: lst.__le__(args[0]) _il_eq = lambda: lst.__eq__(args[0]) _il_ne = lambda: lst.__ne__(args[0]) # The following is to check for existence of an element with the # in clause. _il_contains = lambda: lst.__contains__(args[0]) # * operator with an integer to multiply the list size. _il_mul = lambda: lst.__mul__(args[0]) # + operator to merge with another list and return a new merged # python list. _il_add = lambda: reduce( lambda x, y: ImmutableList._list_append(x, y), args[0], list(lst)) # Reverse + operator, to have python list as the first operand of the # + operator. _il_radd = lambda: reduce( lambda x, y: ImmutableList._list_append(x, y), lst, list(args[0])) # Reverse * operator. (same as the * operator) _il_rmul = lambda: lst.__mul__(args[0]) # Copy, count and index methods. _il_copy = lambda: lst.copy() _il_count = lambda: lst.count(args[0]) _il_index = lambda: lst.index( args[0], args[1], args[2] if args[2] else len(lst)) functions = {0: _il_iter, 1: _il_get_item, 2: _il_len, 3: _il_str, 4: _il_gt, 5: _il_lt, 6: _il_ge, 7: _il_le, 8: _il_eq, 9: _il_ne, 10: _il_contains, 11: _il_add, 12: _il_mul, 13: _il_radd, 14: _il_rmul, 15: _il_copy, 16: _il_count, 17: _il_index} return functions[func_id]() def __init__(self, input_lst, copy_input_list=False): """ Constructor of the Immutable list. Creates a dynamic function/closure that wraps the input list, which can be later passed to the _methods_impl static method defined above. This is required to avoid maintaining the input list as a data member, to prevent the caller from accessing and modifying it. @param input_lst: The input list to be wrapped by the Immutable list. @param copy_input_list: specifies whether to clone the input list and use the clone in the instance. See class documentation for more details. @return: """ assert(isinstance(input_lst, list)) lst = list(input_lst) if copy_input_list else input_lst self._delegate_fn = lambda func_id, *args: \ ImmutableList._methods_impl(lst, func_id, *args) # All overridden methods. def __iter__(self): return self._delegate_fn(0) def __getitem__(self, index): return self._delegate_fn(1, index) def __len__(self): return self._delegate_fn(2) def __str__(self): return self._delegate_fn(3) def __gt__(self, other): return self._delegate_fn(4, other) def __lt__(self, other): return self._delegate_fn(5, other) def __ge__(self, other): return self._delegate_fn(6, other) def __le__(self, other): return self._delegate_fn(7, other) def __eq__(self, other): return self._delegate_fn(8, other) def __ne__(self, other): return self._delegate_fn(9, other) def __contains__(self, item): return self._delegate_fn(10, item) def __add__(self, other): return self._delegate_fn(11, other) def __mul__(self, other): return self._delegate_fn(12, other) def __radd__(self, other): return self._delegate_fn(13, other) def __rmul__(self, other): return self._delegate_fn(14, other) def copy(self): return self._delegate_fn(15) def count(self, value): return self._delegate_fn(16, value) def index(self, value, start=0, stop=0): return self._delegate_fn(17, value, start, stop) def main(): lst1 = ['a', 'b', 'c'] lst2 = ['p', 'q', 'r', 's'] imm1 = ImmutableList(lst1) imm2 = ImmutableList(lst2) print('Imm1 = ' + str(imm1)) print('Imm2 = ' + str(imm2)) add_lst1 = lst1 + imm1 print('Liist + Immutable List: ' + str(add_lst1)) add_lst2 = imm1 + lst2 print('Immutable List + List: ' + str(add_lst2)) add_lst3 = imm1 + imm2 print('Immutable Liist + Immutable List: ' + str(add_lst3)) is_in_list = 'a' in lst1 print("Is 'a' in lst1 ? " + str(is_in_list)) slice1 = imm1[2:] slice2 = imm2[2:4] slice3 = imm2[:3] print('Slice 1: ' + str(slice1)) print('Slice 2: ' + str(slice2)) print('Slice 3: ' + str(slice3)) imm1_times_3 = imm1 * 3 print('Imm1 Times 3 = ' + str(imm1_times_3)) three_times_imm2 = 3 * imm2 print('3 Times Imm2 = ' + str(three_times_imm2)) # For loop print('Imm1 in For Loop: ', end=' ') for x in imm1: print(x, end=' ') print() print("3rd Element in Imm1: '" + imm1[2] + "'") # Compare lst1 and imm1 lst1_eq_imm1 = lst1 == imm1 print("Are lst1 and imm1 equal? " + str(lst1_eq_imm1)) imm2_eq_lst1 = imm2 == lst1 print("Are imm2 and lst1 equal? " + str(imm2_eq_lst1)) imm2_not_eq_lst1 = imm2 != lst1 print("Are imm2 and lst1 different? " + str(imm2_not_eq_lst1)) # Finally print the immutable lists again. print("Imm1 = " + str(imm1)) print("Imm2 = " + str(imm2)) # The following statemetns will give errors. # imm1[3] = 'h' # print(imm1) # imm1.append('d') # print(imm1) if __name__ == '__main__': main()
sumber
Anda dapat mensimulasikan daftar tertaut tunggal gaya Lisp yang tidak dapat diubah menggunakan tupel dua elemen (catatan: ini berbeda dari jawaban tupel elemen apa pun , yang membuat tupel yang jauh kurang fleksibel):
nil = () cons = lambda ele, l: (ele, l)
misalnya untuk daftarnya
[1, 2, 3]
, Anda akan memiliki yang berikut ini:l = cons(1, cons(2, cons(3, nil))) # (1, (2, (3, ())))
Standar
car
dancdr
fungsi Anda sangat mudah:car = lambda l: l[0] cdr = lambda l: l[1]
Karena daftar ini saling terkait, menambahkan ke depan adalah O (1). Karena daftar ini tidak dapat diubah, jika elemen yang mendasari dalam daftar juga tidak dapat diubah, Anda dapat dengan aman membagikan sublist apa pun untuk digunakan kembali di daftar lain.
sumber
Tetapi jika ada tupel array dan tupel, maka array di dalam tupel dapat dimodifikasi.
>>> a ([1, 2, 3], (4, 5, 6)) >>> a[0][0] = 'one' >>> a (['one', 2, 3], (4, 5, 6))
sumber
_private_variables
), daripada penegakan apa pun dari penerjemah./proc/#/mem
atau menautkan ke pustaka yang tidak aman atau apa pun untuk merusak model.List dan Tuple memiliki perbedaan dalam gaya kerjanya.
Di LIST kita dapat membuat perubahan setelah pembuatannya, tetapi jika Anda menginginkan urutan berurutan di mana tidak ada perubahan yang dapat diterapkan di masa mendatang, Anda dapat menggunakan TUPLE.
informasi lebih lanjut::
1) the LIST is mutable that means you can make changes in it after its creation 2) In Tuple, we can not make changes once it created 3) the List syntax is abcd=[1,'avn',3,2.0] 4) the syntax for Tuple is abcd=(1,'avn',3,2.0) or abcd= 1,'avn',3,2.0 it is also correct
sumber
Alih-alih tuple, Anda dapat menggunakan frozenset. frozenset membuat set yang tidak bisa diubah. Anda dapat menggunakan list sebagai anggota frozenset dan mengakses setiap elemen daftar di dalam frozenset menggunakan perulangan tunggal.
sumber