Kurva Naga ASCII

26

pengantar

The Dragon Curve adalah kurva fraktal yang terutama muncul pada halaman judul bagian dari Jurassic Park Novel.

Ini dapat dengan mudah digambarkan sebagai proses melipat kertas, seperti yang dijelaskan dalam artikel Wikipedia tentang kurva ini.

Beberapa iterasi pertama generasi kurva ini terlihat seperti ini (memuji Wikipedia untuk gambar):

masukkan deskripsi gambar di sini

Tantangan

Tulis program atau fungsi yang, diberi bilangan bulat n sebagai input, mengeluarkan iterasi ke-n kurva naga sebagai seni ASCII hanya menggunakan simbol _dan|

  • Anda harus menampilkan gambar hanya menggunakan |, _dan spasi. Anda tidak boleh menampilkan kurva sebagai plot atau apa pun.
  • Anda dapat mengambil input sebagai argumen program, di STDIN atau sebagai parameter fungsi.
  • Input akan selalu berupa bilangan bulat> = 0. Program Anda harus bekerja untuk nilai input yang masuk akal, 12 menjadi yang tertinggi dalam kasus uji yang ditawarkan.
  • Iterasi pertama akan terlihat seperti ini

    • Iterasi 0 adalah

      _
      
    • Iterasi 1 adalah

      _|
      
    • Iterasi 2 adalah

      |_ 
       _|
      
  • Satu garis trailing di akhir tidak masalah. Tidak ada spasi tambahan yang diizinkan selain mengisi garis hingga karakter paling kanan di kurva

  • Tidak ada celah standar penyalahgunaan seperti biasa

Uji Kasus

  • Memasukkan 0

Keluaran

_
  • Memasukkan 3

Keluaran

   _   
|_| |_ 
     _|
  • Memasukkan 5

Keluaran

     _   _   
    |_|_| |_ 
 _   _|    _|
|_|_|_       
  |_|_|      
    |_       
     _|      
  |_|        
  • Memasukkan 10

Keluaran

           _       _                                           
         _|_|    _|_|                                          
        |_|_   _|_|_   _                                       
         _|_|_| |_| |_|_|                                      
   _    |_|_|_        |_                                       
 _|_|    _| |_|        _|                                      
|_|_   _|_          |_|                                        
 _|_|_|_|_|_                                                   
|_| |_|_|_|_|_                                                 
     _|_|_| |_|                                                
    |_| |_                                                     
         _|_   _   _           _   _           _   _           
   _    |_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_         
 _|_|    _|_|_|_|_| |_|    _   _|_| |_|    _   _|_| |_|        
|_|_   _|_|_|_|_|_        |_|_|_|_        |_|_|_|_             
 _|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_   _   _   
|_| |_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_ 
     _|_|    _|_|    _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|
    |_|     |_|     |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_     
                         _|_|_|_|_|_|_|_|_|_|_| |_| |_|_|_|_   
                   _    |_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_ 
                 _|_|    _|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|
                |_|_   _|_|_|_|_|_|_|_|_|_        |_|_|_|_     
                 _|_|_|_|_|_|_|_|_|_|_|_|_|_        |_| |_|    
                |_| |_|_|_| |_|_|_| |_|_|_|_|_                 
                     _|_|    _|_|    _|_|_| |_|                
                    |_|     |_|     |_| |_                     
                                         _|_   _   _           
                                   _    |_|_|_|_|_|_|_         
                                 _|_|    _|_|_|_|_| |_|        
                                |_|_   _|_|_|_|_|_             
                                 _|_|_|_|_|_|_|_|_|_   _   _   
                                |_| |_|_|_|_|_|_|_|_|_|_|_|_|_ 
                                     _|_|_|_|_|_|_|_|_|_|_| |_|
                                    |_| |_|_|_|_|_|_|_|_|_     
               _   _                     _|_|_| |_| |_|_|_|_   
              |_|_| |_             _    |_|_|_        |_|_|_|_ 
           _   _|    _|          _|_|    _| |_|    _   _|_| |_|
          |_|_|_                |_|_   _|_        |_|_|_|_     
            |_|_|                _|_|_|_|_|_        |_| |_|    
              |_   _       _    |_|_|_|_|_|_|_                 
           _   _|_|_|    _|_|    _|_|_|_|_| |_|                
          |_|_|_|_|_   _|_|_   _|_|_|_|_|_                     
            |_| |_| |_|_|_|_|_| |_| |_|_|_|_                   
                      |_|_|_|_        |_|_|_|_                 
                   _   _|_| |_|    _   _|_| |_|                
                  |_|_|_|_        |_|_|_|_                     
                    |_| |_|         |_| |_|                    
  • Memasukkan 12

Keluaran

                                                               _   _           _   _                                           _   _           _   _                                           
                                                              |_|_|_|_        |_|_|_|_                                        |_|_|_|_        |_|_|_|_                                         
                                                           _   _|_| |_|    _   _|_| |_|                                    _   _|_| |_|    _   _|_| |_|                                        
                                                          |_|_|_|_        |_|_|_|_                                        |_|_|_|_        |_|_|_|_                                             
                                                            |_|_|_|_   _   _|_|_|_|_   _   _                                |_|_|_|_   _   _|_|_|_|_   _   _                                   
                                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                 
                                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                                
                                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                     
                                               _   _        |_|_|_|_|_|_|_|_|_| |_| |_|_|_|_                   _   _        |_|_|_|_|_|_|_|_|_| |_| |_|_|_|_                                   
                                              |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                                 
                                           _   _|_| |_|    _   _|_|_|_|_|_| |_|    _   _|_| |_|            _   _|_| |_|    _   _|_|_|_|_|_| |_|    _   _|_| |_|                                
                                          |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                                     
                                            |_|_|_|_   _   _|_|_|_|_|_|_|_|_        |_| |_|                 |_|_|_|_   _   _|_|_|_|_|_|_|_|_        |_| |_|                                    
                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                                 
                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                                                
                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                                     
                                            |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_   _   _           _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _   _           _   _           _   _           
                                                      |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_         
                                                   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|    _   _|_| |_|        
                                                  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_             
                                                    |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_   _   _   
                                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_ 
                                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|
                                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_     
                                               _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|_|_|_| |_| |_|_|_|_   
                                              |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_           _    |_|_|_|_|_| |_|_           _    |_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_ 
                                           _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|        _|_|    _|_|_|_|    _|_|        _|_|    _|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|
                                          |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|         |_|_   _|_|_|_|_    |_|         |_|_   _|_|_|_|_|_|_|_|_|_        |_|_|_|_     
                                            |_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|_|_|_|_|_|_        |_| |_|    
                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_| |_|_|_| |_|_                |_| |_|_|_| |_|_|_| |_|_|_|_|_                 
                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|    _|_|                    _|_|    _|_|    _|_|_| |_|                
                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_|     |_|                     |_|     |_|     |_| |_                     
                                            |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                _|_   _   _           
                                                      |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_                                                           _    |_|_|_|_|_|_|_         
                                                   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|                                                        _|_|    _|_|_|_|_| |_|        
                                                  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|                                                         |_|_   _|_|_|_|_|_             
                                                    |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                _|_|_|_|_|_|_|_|_|_   _   _   
           _       _                                          |_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_   _                                                            |_| |_|_|_|_|_|_|_|_|_|_|_|_|_ 
         _|_|    _|_|                                      _   _|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|                                                                _|_|_|_|_|_|_|_|_|_|_| |_|
        |_|_   _|_|_   _                                  |_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_   _                                                            |_| |_|_|_|_|_|_|_|_|_     
         _|_|_| |_| |_|_|                      _   _        |_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                      _   _                     _|_|_| |_| |_|_|_|_   
   _    |_|_|_        |_                      |_|_|_|_        |_|_| |_|_           _    |_|_|_|_|_| |_|_                                      |_|_| |_             _    |_|_|_        |_|_|_|_ 
 _|_|    _| |_|        _|                  _   _|_| |_|    _   _|    _|_|        _|_|    _|_|_|_|    _|_|                                  _   _|    _|          _|_|    _| |_|    _   _|_| |_|
|_|_   _|_          |_|                   |_|_|_|_        |_|_|_    |_|         |_|_   _|_|_|_|_    |_|                                   |_|_|_                |_|_   _|_        |_|_|_|_     
 _|_|_|_|_|_                                |_|_|_|_   _   _|_|_|                _|_|_|_|_|_|_|_|                                           |_|_|                _|_|_|_|_|_        |_| |_|    
|_| |_|_|_|_|_                                |_|_|_|_|_|_|_|_|_   _            |_| |_|_|_| |_|_                                              |_   _       _    |_|_|_|_|_|_|_                 
     _|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|                _|_|    _|_|                                          _   _|_|_|    _|_|    _|_|_|_|_| |_|                
    |_| |_                                |_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_|     |_|                                           |_|_|_|_|_   _|_|_   _|_|_|_|_|_                     
         _|_   _   _           _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                   |_| |_| |_|_|_|_|_| |_| |_|_|_|_                   
   _    |_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_| |_|_                                                                              |_|_|_|_        |_|_|_|_                 
 _|_|    _|_|_|_|_| |_|    _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|    _|_|                                                                          _   _|_| |_|    _   _|_| |_|                
|_|_   _|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_    |_|                                                                           |_|_|_|_        |_|_|_|_                     
 _|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|                                                                                   |_| |_|         |_| |_|                    
|_| |_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_   _                                                                                                                           
     _|_|    _|_|    _|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|                                                                                                                          
    |_|     |_|     |_| |_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_   _                                                                                                                       
                         _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                                                                                                      
                   _    |_|_|_|_|_| |_|_           _    |_|_|_|_|_| |_|_                                                                                                                       
                 _|_|    _|_|_|_|    _|_|        _|_|    _|_|_|_|    _|_|                                                                                                                      
                |_|_   _|_|_|_|_    |_|         |_|_   _|_|_|_|_    |_|                                                                                                                        
                 _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                                                                                                              
                |_| |_|_|_| |_|_                |_| |_|_|_| |_|_                                                                                                                               
                     _|_|    _|_|                    _|_|    _|_|                                                                                                                              
                    |_|     |_|                     |_|     |_|                                                                                                                                

Mencetak gol

Ini adalah , jadi program terpendek dalam byte menang.

Fatalisasi
sumber
Saya yakin seseorang akan mengeluh tentang ketidakjelasan 'sejumlah besar ruang', jadi bagaimana dengan ikatan asimptotik?
feersum
1
@feersum Yah saya sama sekali tidak membolehkan spasi, jadi tidak ada yang akan mengeluh sekarang!
Fatalkan
2
Saya mengeluh ... sekarang Anda menjadi Nazi!
feersum
@feersum dan Anda adalah Nazi elips horisontal!
Pengoptimal
Ini adalah pertanyaan fraktal terbaik yang pernah ada, saya harap saya punya waktu untuk berpartisipasi! Apakah boleh memutar kurva hingga 90.180.270 derajat atau harus ditampilkan sesuai contoh?
Level River St

Jawaban:

9

Ruby, 239 201 byte

Ini adalah fungsi lambda yang harus dipanggil dengan cara yang sama dengan yang ada di versi yang tidak diklik.

Peningkatan golf meliputi: penugasan 8<<n/2ke variabel untuk digunakan kembali; uptoloop bukannya eachloop; operator ternary bukan if..else..end; penggunaan [y,y+=d].maxuntuk menghitung tempat untuk mencetak |; penggunaan ?_dan ?|bukannya yang setara '|'dan '_'; dan penghapusan redundan %4(terima kasih Sp3000.)

->n{a=Array.new(m=8<<n/2){" "*m}
p=q=1+x=y=m/2
r=3
1.upto(1<<n){|i|d=(r&2)-1
r%2>0?(a[y][x+=d]=?_
x+=d):(a[[y,y+=d].max][x]=?|
p=x<p ?x:p
q=x>q ?x:q)
r+=i/(i&-i)}
a.delete(a[0])
puts a.map{|e|e[p..q]}}

Itu bergantung pada formula berikut dari Wikipedia:

Pertama, ungkapkan n dalam bentuk k * (2 ^ m) dengan k adalah bilangan ganjil. Arah putaran ke-n ditentukan oleh k mod 4 yaitu sisa yang tersisa ketika k dibagi dengan 4. Jika k mod 4 adalah 1 maka putaran ke-n adalah R; jika k mod 4 adalah 3 maka putaran ke-n adalah L.

Wikipedia memberikan kode berikut:

Ada metode non-rekursif satu baris sederhana yang menerapkan metode k mod 4 di atas untuk menemukan arah putaran dalam kode. Memperlakukan turn n sebagai angka biner, hitung nilai boolean berikut: bool turn = (((n & −n) << 1) & n) != 0

Saya memperbaiki ini i/(i&-i)%4yang menggunakan teknik yang sama menggunakan ekspresi i&-iuntuk menemukan digit paling signifikan tetapi ekspresi saya memberikan 1 (untuk belokan kiri) atau 3 (untuk belokan kanan) secara langsung, yang berguna ketika saya melacak arah sebagai angka 0..3(dalam pesan utara, barat, selatan, timur untuk alasan bermain golf.)

Dokumen asli yang tidak digabungkan dalam program

f=->n{
  a=Array.new(8<<n/2){" "*(8<<n/2)}  #Make an array of strings of spaces of appropriate size 
  p=q=1+x=y=4<<n/2                   #set x&y to the middle of the array, p&q to the place where the underscore for n=0 will be printed.                             
  r=3                                #direction pointer, headed East
  (1..1<<n).each{|i|                 #all elements, starting at 1
    d=(r&2)-1                          #d is +1 for East and South, -1 for West and North
    if r%2>0                           #if horizontal
      a[y][x+=d]='_'                     #move cursor 1 position in direction d, print underscore,
      x+=d                               #and move again.
    else                               #else vertical
      a[(y+([d,0].max))][x]='|'          #draw | on the same line if d negative, line below if d positive
      y+=d                               #move cursor
      p=x<p ?x:p                         #update minimum and maximum x values for whitespace truncation later
      q=x>q ?x:q                         #(must be done for vertical bars, to avoid unnecesary space in n=0 case)
    end
    r=(r+i/(i&-i))%4                   #update direction
  }
  a.delete(a[0])                     #first line of a is blank. delete all blank lines.
  puts a.map!{|e|e[p..q]}                 #use p and q to truncate all strings to avoid unnecessary whitespace to left and right.
}


f.call(0)
f.call(2)
f.call(3)
f.call(11)
Level River St
sumber
@Fatalize kedua fungsi (saat ini) identik (kecuali untuk komentar dan spasi putih). Saya telah menambahkan pencetakan ke stdout alih-alih mengembalikan nilai (+5 byte) dan menghapus f=di awal karena ini biasanya tidak dihitung untuk anonim definisi fungsi (-2 byte.) Lebih banyak bermain golf besok. Perhatikan bahwa Anda masih harus menjalankan fungsi golf, dengan menetapkannya ke variabel f=->n{.....}dan memanggilnya menggunakan f.call(n)seperti dalam contoh program pengujian.
Level River St
1
@Formatisasi BTW Saya pikir fraktal terlihat sangat mengagumkan di konsol saya. Terima kasih atas tantangannya.
Level River St
@ Sp3000 memang %4tidak perlu, karena rhanya digunakan dalam ekspresi r%2dan r&2. Terima kasih atas tipnya. Saya sekarang turun ke 202.
Level River St
8

Python 2, 270 222 byte

y=X=Y=0
i=m=x=1
D={}
k=2**input()
while~k+i:j=Y+(y>0);s={2*X+x};D[j]=D.get(j,s)|s;m=min(m,*s);Y+=y;X+=x;exec i/(i&-i)*"x,y=y,-x;";i+=1
for r in sorted(D):print"".join(" | _"[(n in D[r])+n%2*2]for n in range(m,max(D[r])+1))

Sekarang menggunakan rumus untuk putaran ke-n. Aku melihat (((n & −n) << 1) & n)rumus di Wikipedia, tapi tidak menyadari bagaimana berguna itu sampai aku melihatnya di jawaban @ steveverrill ini . Saya benar-benar menjatuhkannya %4juga, jadi ada banyak rotasi yang terjadi, membuat input yang lebih besar memerlukan waktu.


Komentar sampingan: Ini bukan keluaran grafis, tapi ini beberapa kode penyu golf:

from turtle import*
for i in range(1,2**input()+1):fd(5);lt(i/(i&-i)*90)
Sp3000
sumber
Selama tidak butuh satu jam untuk berjalan, tidak apa-apa bagi saya
Fatalkan
Jika saya mengerti dengan benar, kode kedua Anda dapat diubah sedikit untuk menjadi jawaban untuk tantangan ini .
nedla2004
3

C #, 337 byte

Ada sedikit penyalahgunaan aturan di sini. Tidak ada batasan dalam memimpin ruang. Sayangnya, kanvasnya terbatas, jadi ada batas atas untuk n .

Diindentasi untuk kejelasan:

using C=System.Console;
class P{
    static void Main(string[]a){
        int n=int.Parse(a[0]),d=2,x=250,y=500;
        var f="0D";
        while(n-->0)
            f=f.Replace("D","d3t03").Replace("T","10d1t").ToUpper();
        C.SetBufferSize(999,999);
        foreach(var c in f){
            n=c&7;
            d=(d+n)%4;
            if(n<1){
                var b=d%2<1;
                x+=n=b?1-d:0;
                y+=b?0:2-d;
                C.SetCursorPosition(x*2-n,y+d/3);
                C.Write(b?'_':'|');
            }
        }
    }
}
Makanan Tangan
sumber
1

JavaScript (ES6), 220

Menggunakan rumus wikipedia untuk belokan kiri dan kanan.

n=>(d=>{for(i=x=y=d;i<1<<n;d+=++i/(i&-i))z=d&2,(w=d&1)?y+=z/2:x+=1-z,g=x<0?g.map(r=>[,,...r],x=1):g,g=y<0?[y=0,...g]:g,r=g[y]=g[y]||[],r[x]='_|'[w],w?y-=!z:x+=1-z})(0,g=[])||g.map(r=>[...r].map(c=>c||' ').join``).join`
`

Kurang golf

n=>{
  g=[];
  for(i=x=y=d=0;i<1<<n;d+=++i/(i&-i))
    z=d&2,
    (w=d&1)?y+=z/2:x+=1-z,
    g=x<0?g.map(r=>[,,...r],x=1):g,
    g=y<0?[y=0,...g]:g,
    r=g[y]=g[y]||[],
    r[x]='_|'[w],
    w?y-=!z:x+=1-z
  return g.map(r=>[...r].map(c=>c||' ').join``).join`\n`
}

F=
n=>(d=>{for(i=x=y=d;i<1<<n;d+=++i/(i&-i))z=d&2,(w=d&1)?y+=z/2:x+=1-z,g=x<0?g.map(r=>[,,...r],x=1):g,g=y<0?[y=0,...g]:g,r=g[y]=g[y]||[],r[x]='_|'[w],w?y-=!z:x+=1-z})(0,g=[])||g.map(r=>[...r].map(c=>c||' ').join``).join`
`

function update() {
  var n=+I.value
  O.textContent=F(n)
}

update()
pre { font-size: 8px }
<input id=I value=5 type=number oninput='update()'><pre id=O></pre>

edc65
sumber
1

APL (Dyalog Unicode) , 65 64 byte SBCS

('_|'⍴⍨≢a)@a⍴∘''1+⌈/a←(⊢-⌊/)⌈2+/÷∘¯2 1¨11 9∘○¨+\0,(⊢,0j1×⌽)⍣⎕,1

Cobalah online!

(⊢,0j1×⌽)⍣⎕,1menghasilkan daftar langkah sebagai bilangan kompleks. Itu dimulai dari 1dan berulang kali menambahkan ,( ) salinan daftar terbalik ( ) dikalikan dengan0j1 = sqrt (-1).

+\0, awali 0 dan hitung jumlah awalan

11 9∘○¨ menguraikan kompleks menjadi pasangan (nyata; imajiner)

÷∘¯2 1¨ bagilah bagian yang sebenarnya dengan -2

2+/ jumlah pasangan yang berdekatan

plafon

(⊢-⌊/) kurangi minima dari semuanya, sehingga coord tidak negatif

a← ditugaskan kepada a

⍴∘''⊃1+⌈/ buat matriks char kosong sedemikian rupa sehingga max coords bisa muat

('_|'⍴⍨≢a)@amenempatkan bolak-balik _dan |pada koordinat daria

ngn
sumber