Menentukan rotasi kotak diberikan daftar poin

19

Dalam tantangan ini, Anda akan diberikan daftar poin. Titik-titik ini terletak pada perimeter persegi imajiner . Tujuan Anda adalah untuk:

  1. Jika memungkinkan, cetak rotasi kotak, yang akan menjadi nilai dari [0, 90) di mana 0 mewakili kotak dengan garis vertikal dan horizontal. Rotasi diberikan dalam derajat yang dihitung berlawanan arah jarum jam.
  2. Jika rotasi kuadratnya ambigu (misalnya hanya diberi 2 poin), cetak "Tidak Dikenal"
  3. Jika membuat kuadrat dengan poin tidak mungkin, cetak "Tidak Mungkin"

Poin yang Anda berikan dijamin unik, dan tidak ada urutan tertentu. Anda dapat menggunakan format apa pun yang ingin Anda masukkan dalam daftar, tetapi untuk contoh saya, poin saya akan berada dalam format x,y, dan dipisahkan dengan ruang. Angka-angka tersebut adalah angka floating-point, dan Anda dapat mengasumsikan angka-angka itu berada dalam rentang yang dapat ditangani oleh bahasa Anda. Output Anda harus akurat untuk setidaknya 3 tempat desimal, dan anggap bahasa Anda menangani angka floating point dengan akurasi sempurna.

Berikut adalah beberapa kasus uji (saya telah membuat sebagian besar dari ini menggunakan bilangan bulat untuk memudahkan visualisasi, tetapi program Anda harus menangani poin mengambang):

Tidak dikenal:

0,0                      
0,0 1,0        
0,0 1,0 0,1              
0,0 1,0 0,1 1,1
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2

Mustahil:

0,0 1,0 2,0 3,1 4,2
0,0 1,0 2,0 1,1
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2 2,2
2,0 0,1 2,2 0,3
0,0 2,1 0,2 2,2 -1,1

Kemungkinan (jika tidak ditunjuk, harus mengembalikan 0):

0,0 1,0 2,0
0,0 0.3,0.3 0.6,0.6  (should return 45)
0,0 0.1,0.2 0.2,0.4  (should return appx 63.435 (the real value is arctan(2)))
0,0 0,1 2,1 2,2
0,1 0,2 1,0 1,4 2,0 2,4 4,1 4,3 

Saya mungkin telah melewatkan beberapa kasus uji yang menarik. Jika demikian, beri komentar untuk menambahkannya.

Ini kode-golf, jadi kode terpendek menang!

Nathan Merrill
sumber
Apakah ada akurasi minimum yang disyaratkan? Seberapa jauh dari jawaban yang benar dapat hasilnya sebelum dianggap salah?
trichoplax
@trichoplax seakurat implementasi bahasa Anda dari angka floating-point memungkinkan.
Nathan Merrill
Apakah ini berarti bahwa jika ada 2 pendekatan yang mungkin dan satu memberikan hasil yang sedikit lebih akurat dalam bahasa Anda, pendekatan yang paling akurat harus digunakan?
trichoplax
@trichoplax ya.
Nathan Merrill
2
@NathanMerrill Bagaimana saya (atau siapa saja) tahu jika ada pendekatan yang lebih akurat? Saya pikir akan lebih masuk akal untuk hanya membutuhkan akurasi minimum tetap, seperti 4 atau 6 tempat desimal. Meskipun saya bahkan tidak yakin apakah ketidakakuratan representasi floating-point dari input membuat banyak contoh menjadi tidak mungkin. Mungkin input rasional atau integer akan lebih baik untuk itu.
Martin Ender

Jawaban:

6

Rev 1: Ruby, 354 bytes

bermain golf lebih lanjut berkat blutorange.

->a{t=s=Math::PI/18E4
d=r=c=0
a=a.map{|e|e-a[0]}
0.upto(36E4){|i|b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose
m,n=b
if n.min>=f=0
l=[m.max-x=m.min,n.max].max
a.each_index{|j|f+=((l-w=n[j])*(x+l-v=m[j])*(x-v)*w)**2}
(1E-9>q=f/l**8)&&(c>0&&(i-d)%9E4%89E3>1E3?c=9E9:0;c+=1;d=i)
q<t&&(r=i)&&t=q;end}
c<101&&a[1]?c<1?'impossible':r%9E4/1.0E3:'unknown'}

Ruby, 392 byte

->(a){
s=Math::PI/18E4
t=1
d=r=c=0
a=a.map{|e|e-a[0]}
(0..36E4).each{|i|
b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose
m=b[0]
n=b[1]
x=m.min
if n.min>=0
l=[m.max-x,n.max].max
f=0
a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2}
q=f/l**8
if q<1E-9
c>0&&(i-d)%9E4%89E3>1E3?(c=9E9):0
c+=1
d=i
end
if q<t
r=i
t=q
end
end
}
c>100||a.size<2?'unknown':c<1? 'impossible':r%9E4/1.0E3
}

Algoritma adalah sebagai berikut:

-Klik titik arbitrer (yang pertama) dan pindahkan ke titik asal (kurangi koordinat titik ini dari semua titik dalam daftar.)

-Cobalah semua rotasi persegi tentang asal dalam peningkatan 0,001 derajat, hingga 360 derajat.

-Untuk rotasi tertentu, jika semua titik berada di atas sumbu y, gambarkan kotak terkecil yang mungkin di sekitar semua titik, dengan memasukkan titik terendah dan paling kiri.

-Periksa apakah semua titik ada di tepi. Ini dilakukan dengan perhitungan lembut yang mengambil setiap titik, menemukan jarak kuadrat dari semua tepi, dan mengalikannya bersama. Ini memberikan kecocokan yang baik daripada jawaban ya / tidak. Ditafsirkan bahwa suatu solusi ditemukan jika produk ini dibagi dengan panjang sisi ^ 8 kurang dari 1E-9. Dalam praktiknya ini kurang dari satu derajat toleransi.

-Sesuaian terbaik diambil mod 90 derajat dan dilaporkan sebagai sudut yang benar.

Saat ini kode mengembalikan nilai ambigu jika lebih dari 100 solusi ditemukan (pada resolusi 0,001 derajat. Itu 0,1 derajat toleransi.)

fungsi sepenuhnya bekerja pertama, dalam program uji

Saya meninggalkan resolusi pada 1/10 resolusi yang diperlukan untuk membuat kecepatan masuk akal. Ada kesalahan 0,01 degress pada kasus uji terakhir.

g=->(a){
 s=Math::PI/18000
 t=1
 d=r=-1
 c=0
 a=a.map{|e| e-a[0]} 

 (0..36000).each{|i| 
    b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose

    m=b[0]
    n=b[1]
    x=m.min

    if n.min>=0

       l=[m.max-x,n.max].max
       f=0
       a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2}
       q=f/l**8

       if q<1E-9

         j=(i-d)%9000
         c>0&&j>100&&j<8900?(c=9E9):0 
         c+=1
         d=i
       end  

       if q<t
         r=i
         t=q
       end

     end    
  }

 print "t=",t,"   r=",r,"     c=",c,"    d=",d,"\n"
 p c>100||a.size<2?'unknown':c<1? 'impossible':r%9000/100.0   
}


#ambiguous
#g.call([Complex(0,0)])
#g.call([Complex(0,0),Complex(1,0)])
#g.call([Complex(0,0),Complex(1,0),Complex(0,1)])
#g.call([Complex(0,0),Complex(1,0),Complex(0,1),Complex(1,1)])
#g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2)])

#impossible
#g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(3,1),Complex(4,2)])
#g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(1,1)])
#g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2),Complex(2,2)])
#g.call([Complex(2,0),Complex(0,1),Complex(2,2),Complex(0,3)])
#g.call([Complex(0,0),Complex(2,1),Complex(0,2),Complex(2,2),Complex(-1,1)])

#possible
g.call([Complex(0,0),Complex(1,0),Complex(2,0)])
g.call([Complex(0,0),Complex(0.3,0.3),Complex(0.6,0.6)]) #(should return 45)
g.call([Complex(0,0),Complex(0.1,0.2),Complex(0.2,0.4)]) #(should return appx 63.435 (the real value is arctan(2)))
g.call([Complex(0,0),Complex(0,1),Complex(2,1),Complex(2,2)])
g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,4),Complex(2,0),Complex(2,4),Complex(4,1),Complex(4,3)])

versi golf, sesuai dengan spesifikasi, membutuhkan sekitar satu menit per panggilan, dalam program uji.

Masih ada kesalahan sial 0,001 derajat pada test case terakhir. Meningkatkan resolusi lebih lanjut mungkin akan menghilangkannya.

g=->(a){                                                            #take an array of complex numbers as input
  s=Math::PI/18E4                                                   #step size PI/180000
  t=1                                                               #best fit found so far
  d=r=c=0                                                           #angles of (d) last valid result, (r) best fit; c= hit counter
  a=a.map{|e|e-a[0]}                                                #move shape so that first point coincides with origin
  (0..36E4).each{|i|                                                #0..360000
    b=a.map{|e|(e/Complex.polar(1,i*s)).rect}.transpose             #rotate each element by dividing by unit vector of angle i*s, convert to array... 
    m=b[0]                                                          #...transpose array [[x1,y1]..[xn,yn]] to [[x1..xn],[y1..yn]]...
    n=b[1]                                                          #...and assign to variables m and n 
    x=m.min                                                         #find leftmost point
    if n.min>=0                                                     #if all points are above x axis
       l=[m.max-x,n.max].max                                        #find the sidelength of smallest square in which they will fit
       f=0                                                          #f= accumulator for errors. For each point
       a.each_index{|j|f+=((l-n[j])*(x+l-m[j])*(x-m[j])*n[j])**2}   #...add to f the product of the squared distances from each side of the smallest square containing all points
       q=f/l**8                                                     #q= f normalized with respect to the sidelength.
       if q<1E-9                                                    #consider a hit if <1E-9
         c>0&&(i-d)%9E4%89E3>1E3?(c=9E9):0                          #if at least one point is already found, and the difference between this hit and the last exceeds+/-1 deg (mod 90), set c to a high value
         c+=1                                                       #increment hit count by 1 (this catches infinitely varible cases)
         d=i                                                        #store the current hit in d
       end  
       if q<t                                                       #if current fit is better than previous one
        r=i                                                         #store the new angle
        t=q                                                         #and revise t to the new best fit.
       end             
    end
  }
  c>100||a.size<2?'unknown':c<1? 'impossible':r%9E4/1.0E3           #calculate and return value, taking special care of case where single point given.
}
#ambiguous
puts g.call([Complex(0,0)])
puts g.call([Complex(0,0),Complex(1,0)])
puts g.call([Complex(0,0),Complex(1,0),Complex(0,1)])
puts g.call([Complex(0,0),Complex(1,0),Complex(0,1),Complex(1,1)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2)])

#impossible
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(3,1),Complex(4,2)])
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0),Complex(1,1)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,3),Complex(2,0),Complex(2,3),Complex(3,1),Complex(3,2),Complex(2,2)])
puts g.call([Complex(2,0),Complex(0,1),Complex(2,2),Complex(0,3)])
puts g.call([Complex(0,0),Complex(2,1),Complex(0,2),Complex(2,2),Complex(-1,1)])

#possible
puts g.call([Complex(0,0),Complex(1,0),Complex(2,0)])
puts g.call([Complex(0,0),Complex(0.3,0.3),Complex(0.6,0.6)]) #(should return 45)
puts g.call([Complex(0,0),Complex(0.1,0.2),Complex(0.2,0.4)]) #(should return appx 63.435 (the real value is arctan(2)))
puts g.call([Complex(0,0),Complex(0,1),Complex(2,1),Complex(2,2)])
puts g.call([Complex(0,1),Complex(0,2),Complex(1,0),Complex(1,4),Complex(2,0),Complex(2,4),Complex(4,1),Complex(4,3)])

Perhatikan bahwa untuk sekitar 30% lebih banyak kode, algoritma ini dapat diadaptasi untuk bekerja dengan cepat: jelas bahwa dalam kasus dengan sejumlah solusi terbatas, salah satu ujungnya terletak rata di sepanjang kubus, jadi yang harus kita coba adalah sudut-sudut itu yang sesuai dengan setiap pasangan simpul. Anda juga perlu melakukan sedikit gerak-gerik untuk memeriksa tidak ada banyak solusi yang tak terhingga.

Level River St
sumber
Saya memperbaiki test case kedua, terima kasih
Nathan Merrill
@NathanMerrill kasus yang direvisi 0,0 1,0 2,0 1,2masih memungkinkan untuk kuadrat 0,0 diagonal ... 2,2. Saya sudah mencoba itu, dan juga 0,0 1,0 2,0 1,1(yang terakhir memang tidak mungkin.) Poin lain: apakah Anda menganggap itu dapat diterima atau tidak dapat diterima bahwa kode saya mengembalikan tidak mungkin daripada tidak diketahui ketika hanya satu titik yang diberikan? Saya akan menghargai jawaban sebelum mulai bermain golf.
Level River St
Aku bermaksud melakukannya 1,1. Tidak yakin bagaimana 1,2sampai di sana. Itu tidak bisa diterima.
Nathan Merrill
Anda harus bisa mendapatkannya setidaknya 354 byte seperti ini: pastebin.com/jsgwMKQF
blutorange
@blutorange terima kasih atas tipsnya! Saya baru mengenal Ruby dan mengalami kesulitan bermain golf. Saya meninggalkan banyak masalah if..endkarena saya memiliki masalah besar dengan operator ternary yang bersarang di Ruby. Saya melihat Anda mengatasinya dengan menggunakan &&.
Level River St
6

Perl

Halo, ini pertanyaan saya yang sederhana. Kasing uji dimasukkan ke dalam aliran DATA di bagian bawah file. Algoritma telah berkembang dengan pendekatan try-error.
Saya akui bahwa ini adalah pendekatan heuristik yang luas, tetapi sangat cepat: ia menyelesaikan semua kasus secara instan .
Saya sadar akan ada beberapa bug, tetapi sampai sekarang memberikan jawaban yang benar untuk semua kasus uji.
Saya juga sadar bahwa kode terpendek menang, tetapi saya yakin ini adalah yang terpendek dalam arti tercepat istilah tersebut.

Di sini adalah algoritma

  1. memeriksa titik-titik dan untuk setiap segmen antara dua titik, catatan kemiringan, panjang, x-intersep, y-intersep

  2. temukan garis lurus (yaitu tiga titik atau dua segmen yang berdekatan) dan kemiringan yang mungkin berbeda (katakanlah rotasi). Melacak segmen terpanjang yang tersedia di setiap baris.

  3. temukan semua jarak antara segmen dan titik ketiga (ini harus digunakan untuk titik 4). Melacak jarak minimum non-nol.

  4. untuk empat titik (kasar persegi panjang) temukan titik dalam

Tampilkan solusi:

A. Katakan "Tidak Mungkin" jika ada satu atau lebih titik dalam.

B. Satu Baris:

  • Jika sebagian besar titik dalam satu garis tanpa titik dalam, ucapkan "Kemungkinan"

  • Jika titik terlalu dekat dengan garis, katakan "Tidak Mungkin"

    C. Dua baris:

  • Ucapkan "Kemungkinan" saat hanya ada satu rotasi yang memungkinkan

  • Katakan "Tidak Mungkin" ketika ada lebih dari satu rotasi

    D. Tanpa garis: temukan rotasi yang sesuai dengan segmen rotasinya 90 °

  • Katakan "Kemungkinan" jika hanya satu yang cocok atau sebanyak titik yang cocok.

  • Katakan "Mustahil" jika lebih dari satu cocok dan tidak sebanyak titik

  • Katakan "Tidak Diketahui" jika rotasi sesuai.

Ini kodenya (semua bug yang diketahui sudah diatasi)

#!/usr/bin/perl
use strict ;
use warnings ;
my $PI = 4*atan2( 1, 1 ) ;
my $EPS = 0.000001 ;
while ( <DATA> ) {
    if ( /^\s*#/ ) { print ; next } # print comments
    chomp ;
    my @dot = split /\s+/ ;
    my $n = scalar @dot || next ; # skip empty lines

    # too few dots
    if ( $n < 3 ) {
        print "@dot : Unknown.\n" ;
        next
    }

    my %slop = () ; # segment --> its slope
    my %leng = () ; # segment --> its length
    my %x0   = () ; # segment --> its line's x-intercept
    my %y0   = () ; # segment --> its line's y-intercept
    my %side = () ; # slope   --> list of segments (with duplicates)

    # 1. examine dots
    for my $p (@dot) {
        my ($px,$py) = split /,/, $p ;
        for my $q (@dot) {
            next if $p eq $q ;
            next if defined ( $slop{ "$q $p" } ) ;
            my $segment_name = "$p $q" ;
            my ($qx,$qy) = split /,/, $q ;
            my $dx = $px - $qx ;
            my $dy = $py - $qy ;
            my $slope = "inf" ; $slope = $dy / $dx if abs($dx) > 0 ;
            my $sd = $dx*$dx+$dy*$dy ;
            my $x0 = ( $slope eq 'inf' ? $px : "nan" ) ;
            my $y0 = ( abs($slope) > 0 ? $px : "nan" ) ;
            $x0 = $qx - $qy / $slope if abs($slope) > 0 ;
            $y0 = $qy - $qx * $slope if $slope ne "inf" ;
            push @{ $side{ $slope } }, $segment_name ;
            $slop{ $segment_name } = $slope ;
            $leng{ $segment_name } = sqrt( $sd ) ;
            $x0{ $segment_name } = $x0 ;
            $y0{ $segment_name } = $y0 ;
        }
    }

    # 2. find straight lines and distinct possible slopes (rotation)
    my %line = () ;     # slope --> segment name
    my %rotation = () ; # slope --> slope itself
    my $a_rotation ;
    for my $slope ( keys %side ) {
        my %distinct = () ;
        for my $segment_name ( @{ $side{ $slope } } ) {
            $distinct{ $segment_name } = $slope ; 
            my $rot = $slope eq 'inf' ? '0' : abs( $slope < 0 ? 1/$slope : $slope ) ;
            $rotation{ $rot } = $rot ;
            $a_rotation = $rot ;
        }
        for my $a_segm ( keys %distinct ) {
            for my $b_segm ( keys %distinct ) {
                next if $a_segm eq $b_segm ;
                # the two segment has to be adjacent
                my ($a1,$a2) = split / /, $a_segm;
                my ($b1,$b2) = split / /, $b_segm;
                next unless $a1 eq $b1 || $a1 eq $b2 || $a2 eq $b1 || $a2 eq $b2 ;
                # the two segment has to have same intercepts
                my $x0a = $x0{ $a_segm } ;
                my $x0b = $x0{ $b_segm } ;
                my $y0a = $y0{ $a_segm } ;
                my $y0b = $y0{ $b_segm } ;
                next unless $x0a eq $x0b && $y0a eq $y0b ;
                # keep the longest segment
                my $a_len = 0 ;
                $a_len = $leng{ $line{ $slope } } if defined( $line{ $slope } ) && defined( $leng{ $line{ $slope } } ) ;
                for my $segm ("$a1 $b1", "$a1 $b2", "$a2 $b1", "$a2 $b2",
                              "$b1 $a1", "$b2 $a1", "$b1 $a2", "$b2 $a2" ) {
                    next unless defined ( $leng{ $segm } ) ;
                    if ( $a_len < $leng{ $segm } ) {
                        $a_len = $leng{ $segm } ;
                        $line{ $slope } = $segm ;
                    }
                }
            }
        }
    }

    # 3. find distance between a segment and a third point
    my %distance = () ;            # segment-point --> distance
    my %distance_mani = () ;       # distance --> array of segment-point
    my %min_distance = () ;        # segment --> min distance to other dots
    for my $segment_name ( keys %slop ) {
        my $a = $slop{ $segment_name } ;
        my $b = -1 ;
        my $c = $y0{ $segment_name } ;
        my $z = $x0{ $segment_name } ;
        for my $p (@dot) {
            next if $segment_name =~ /$p/ ; # skip dots that are in the segment
            my ($px,$py) = split /,/, $p ;
            my $d = 0 ;
            if ( $a ne 'inf' ) {
                my $num = ($b * $py) + ($a * $px) + $c ;
                my $den = sqrt( $a*$a + $b*$b ) ;
                $d = abs( $num ) / $den ;
            }
            else {
                $d = abs( $px - $z );
            }
            $distance{ "$segment_name $p" } = $d ;
            push @{ $distance_mani{ $d } }, "$segment_name $p" ;
            if ( $d > 0 ) {
                $min_distance{ $segment_name } = $d if !defined ( $min_distance{ $segment_name } ) or $d < $min_distance{ $segment_name }
            }
        }
    }

    # 4. find inner dots: pick 4 dots to form a well shaped pseudo-rectangle
    #    and check for any other dot that is too close to all the 4 sides.
    my $fail = 0 ;
    RECTANGLE:
    for my $a ( @dot ) {
        for my $b ( @dot ) {
            next if $a eq $b ;
            my ($ax,$ay) = split /,/, $a ;
            my ($bx,$by) = split /,/, $b ;
            next if $ax > $bx || $ay > $by ;
            for my $c ( @dot ) {
                next if $c eq $a or $c eq $b ;
                my ($cx,$cy) = split /,/, $c ;
                next if $bx < $cx || $by > $cy ;
                for my $d ( @dot ) {
                    next if $d eq $a or $d eq $b or $d eq $c ;
                    my ($dx,$dy) = split /,/, $d ;
                    next if $cx < $dx || $cy < $dy  ;
                    next if $dx > $ax || $dy < $ay  ;
                    for my $e ( @dot ) {
                        next if $e eq $a or $e eq $b or $e eq $c or $e eq $d ;

                        my $abe = $distance{ "$a $b $e" } || $distance{ "$b $a $e" } || next ;
                        my $bce = $distance{ "$b $c $e" } || $distance{ "$c $b $e" } || next ;
                        my $cde = $distance{ "$c $d $e" } || $distance{ "$d $c $e" } || next ;
                        my $dae = $distance{ "$d $a $e" } || $distance{ "$a $d $e" } || next ;

                        my $abd = $distance{ "$a $b $d" } || $distance{ "$b $a $d" } || next ;
                        my $abc = $distance{ "$a $b $c" } || $distance{ "$b $a $c" } || next ;
                        my $bca = $distance{ "$b $c $a" } || $distance{ "$c $b $a" } || next ;
                        my $bcd = $distance{ "$b $c $d" } || $distance{ "$c $b $d" } || next ;
                        my $cdb = $distance{ "$c $d $b" } || $distance{ "$d $c $b" } || next ;
                        my $cda = $distance{ "$c $d $a" } || $distance{ "$d $c $a" } || next ;
                        my $dac = $distance{ "$d $a $c" } || $distance{ "$a $d $c" } || next ; 
                        my $dab = $distance{ "$d $a $b" } || $distance{ "$a $d $b" } || next ; 

                        if ( $abd > $abe && $abc > $abe && 
                             $bca > $bce && $bcd > $bce &&
                             $cdb > $cde && $cda > $cde &&
                             $dac > $dae && $dab > $dae) {
                            ## print "     $a $b $c $d --> $e\n";
                            $fail ++ ;
                            last RECTANGLE ;
                        }
                    }
                }
            }
        }
    }
    if ( $fail ) {
        print "@dot : Impossible.\n" ;
        next # DATA 
    }

    my $m = scalar keys %rotation ; # how many distinct slopes
    my $r = scalar keys %line ; # how many lines i.e. >3 dots in a straight line

    print "@dot : " ;
    # most of dots lie in single line without inner dots
    if ( $r == 1 ) {
        $a_rotation = (keys %line)[0] ;
        my $a_segment = $line{ $a_rotation } ;
        my $a_dist = $min_distance{ $a_segment } || 0 ;
        if ( $a_dist && $a_dist < $leng{ $a_segment } ) {
            print "Impossible.\n"  ;
        }
        else {
            print "Possible. --> " . sprintf("%.3f deg", 180 / $PI * atan2( $a_rotation, 1 ) ) . "\n" ;
        }
        next # DATA
    }
    # two lines
    if ( $r == 2 ) {
        print "Impossible.\n" if $m > 1 ;
        print "Possible. --> " .
            sprintf("%.3f deg", 180 / $PI * atan2( $a_rotation, 1 ) ) . "\n" if $m == 1 ;  # never?
        next ; # DATA
    }
    # no lines
    if ( $r == 0 ) {
        # match between segment rotation and other side
        my $count = 0 ;
        my $numeros = 0 ;
        for my $slope ( keys %rotation ) {
            my $rot = $slope eq '0' ? 'inf' : -1/$slope ;
            if ( exists $side{ $rot } ) {
                $count++ ;
                my $u = scalar @{ $side{ $rot } } ;
                if ( $numeros < $u ) {
                    $numeros = $u ;
                    $a_rotation = $slope ;
                }
            }
        }
        print "Possible. --> " .
            sprintf("%.3f deg", 180 / $PI * atan2( $a_rotation, 1 ) ) . "\n" if $count < 2 or $count == $n ;
        print "Unknown.\n"    if $count == $m ;
        print "Impossible.\n"    if $count > 2 && $count != $n && $count != $m;
        next # DATA
    }
    # there are lines
    print "lines $r " ;
    my $shorter = 0 ;
    my $longer = 0 ;
    for my $slope ( keys %line ) {
        for my $dis ( keys %distance_mani ) {
            $shorter++ ;
            $longer++ ;
        }
    }
    print "ACK! WHAT IS THIS CASE! n=$n, m=$m, r=$r\n" ;
    1 ;
}

1;

__DATA__
# Unknown:

0,0
0,0 1,0
0,0 1,0 0,1
0,0 1,0 0,1 1,1
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2

# Impossible:

0,0 1,0 2,0 3,1 4,2
0,0 1,0 2,0 1,1
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2 2,2
2,0 0,1 2,2 0,3
0,0 2,1 0,2 2,2 -1,1

# Possible (if not designated, should return 0):

0,0 1,0 2,0 1,2
0,0 1,0 2,0 0.5,2.1

0,0 1,0 2,0
0,0 1,0 2,0 1,2
0,0 0.3,0.3 0.6,0.6
0,0 0.1,0.2 0.2,0.4
0,0 0,1 2,1 2,2
0,1 0,2 1,0 1,4 2,0 2,4 4,1 4,3

Dan ini dia ouptutnya

# Unknown:
0,0 : Unknown.
0,0 1,0 : Unknown.
0,0 1,0 0,1 : Unknown.
0,0 1,0 0,1 1,1 : Unknown.
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2 : Unknown.
# Impossible:
0,0 1,0 2,0 3,1 4,2 : Impossible.
0,0 1,0 2,0 1,1 : Impossible.
0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2 2,2 : Impossible.
2,0 0,1 2,2 0,3 : Impossible.
0,0 2,1 0,2 2,2 -1,1 : Impossible.
# Possible (if not designated, should return 0):
0,0 1,0 2,0 1,2 : Possible. --> 0.000 deg
0,0 1,0 2,0 0.5,2.1 : Possible. --> 0.000 deg
0,0 1,0 2,0 : Possible. --> 0.000 deg
0,0 1,0 2,0 1,2 : Possible. --> 0.000 deg
0,0 0.3,0.3 0.6,0.6 : Possible. --> 45.000 deg
0,0 0.1,0.2 0.2,0.4 : Possible. --> 63.435 deg
0,0 0,1 2,1 2,2 : Possible. --> 0.000 deg
0,1 0,2 1,0 1,4 2,0 2,4 4,1 4,3 : Possible. --> 0.000 deg

Salam.

Matteo.

Mattsteel
sumber
Inilah bug pertama: kasing Anda 0,0 1,0 2,0 1,1 (Mustahil) dikatakan "Kemungkinan. -> 0,000 deg" oleh skrip saya. Saya harus memperbaikinya
Mattsteel
Saya sangat suka solusi ini. Jangan terlalu khawatir tentang kode golf, bukan itu tantangannya sebenarnya, dan belum tentu orang yang akan mendapatkan hadiahnya.
Nathan Merrill
Terima kasih, Nathan. Outputnya menunjukkan lebih banyak informasi: ini untuk tujuan debug dan saya sengaja membiarkannya diperbaiki
Mattsteel
Bug kedua: palsu "Mustahil. (Tanpa garis) n = 8, m = 6, r = 0 c = 6" ditulis tepat setelah jawaban yang benar "0,1 0,2 1,0 1,3 2,0 2,3 3,1 3,2: Tidak diketahui. (Tanpa garis) n = 8, m = 6, r = 0 c = 6 ".
Mattsteel
Dua bug diperbaiki: semua case sekarang berjalan dengan baik.
Mattsteel