Digit jumlah koefisien binomial pusat

13

Tugasnya adalah hanya untuk melihat seberapa cepat Anda dapat menghitung n memilih n / 2 (untuk genap n) daripada fungsi builtin dalam python. Tentu saja untuk besar n ini adalah angka yang agak besar sehingga daripada menampilkan seluruh nomor Anda harus menampilkan jumlah digit. Misalnya, untuk n = 100000, jawabannya adalah 135702. Untuk n=1000000itu 1354815.

Berikut adalah kode python:

from scipy.misc import comb
def sum_digits(n):
   r = 0
   while n:
       r, n = r + n % 10, n / 10
   return r
sum_digits(comb(n,n/2,exact=True))

Skor Anda adalah (highest n on your machine using your code)/(highest n on your machine using my code). Kode Anda harus berakhir dalam 60 detik atau kurang.

Program Anda harus memberikan hasil yang benar untuk semua genap n: 2 <= n <= (n tertinggi Anda)

Anda tidak dapat menggunakan kode atau pustaka bawaan yang menghitung koefisien atau nilai binomial yang dapat dengan cepat diubah menjadi koefisien binomial.

Anda dapat menggunakan bahasa pilihan Anda.


Jawaban terkemuka Jawaban terkemuka saat ini dengan 680,09 yang menakjubkan adalah dengan justhalf.


sumber
2
Apakah kita seharusnya mengirimkan solusi dengan python atau dalam bahasa pilihan?
Dimungkinkan untuk menulis rutin yang melakukan ini pada komputer modern dan nmenghasilkan jutaan, sementara saya ragu fungsi Python akan menangani sesuatu yang lebih besar daripada n = 1e5tanpa tersedak.
COTO
@Alessandro Anda dapat menggunakan bahasa pilihan Anda. Satu-satunya batasan adalah Anda tidak dapat menggunakan fungsi builtin untuk menghitung koefisien.
2
Apakah fungsi faktorial diizinkan? Saya berasumsi tidak karena mereka bisa "dengan cepat diubah menjadi koefisien binomial" (semuanya adalah satu faktorial dibagi dengan faktorial kuadrat lainnya), tetapi karena jawaban menggunakan satu faktor sekarang, kejelasan akan lebih baik.
Geobits
1
@ Comintern: Saya telah berhasil mereplikasi titik referensi dengan 287mil dalam 1 menit, atau 169mil dalam 35 detik! :)
justhalf

Jawaban:

9

C ++ (GMP) - (287.000.000 / 422.000) = 680,09

Tanpa malu-malu menggabungkan Teorema Kummer dengan xnor dan GMP oleh qwr. Masih bahkan tidak dekat dengan solusi Go, tidak yakin mengapa.

Sunting: Terima kasih Keith Randall untuk pengingat bahwa multiplikasi lebih cepat jika angkanya sama. Saya menerapkan multiplikasi multi-level, mirip dengan konsep penggabungan memori pada manajemen memori. Dan hasilnya luar biasa. Apa yang digunakan untuk mengambil 51s, sekarang hanya membutuhkan 0,5s (yaitu, peningkatan 100 kali lipat !!)

KODE LAMA (n = 14.000.000)
Dilakukan pengayakan dalam 0,343s
Selesai menghitung binom dalam 51.929s
Dilakukan penjumlahan dalam 0,901d
14000000: 18954729

0m53.194s nyata
pengguna 0m53.116s
sys 0m0.060s

KODE BARU (n = 14.000.000)
Dilakukan pengayakan dalam 0,343s
Selesai menghitung binom dalam 0,552s
Dilakukan penjumlahan dalam 0,902s
14000000: 18954729

0m1.804s nyata
pengguna 0m1.776s
sys 0m0.023s

Berlari untuk n=287,000,000

Dilakukan pengayakan di 4.211s
Selesai menghitung binom dalam 17,934s
Dilakukan penjumlahan di 37.677s
287000000: 388788354

0m59.928s nyata
pengguna 0m58.759s
sys 0m1.116s

Kode. Kompilasi dengan-lgmp -lgmpxx -O3

#include <gmpxx.h>
#include <iostream>
#include <time.h>
#include <cstdio>

const int MAX=287000000;
const int PRIME_COUNT=15700000;

int primes[PRIME_COUNT], factors[PRIME_COUNT], count;
bool sieve[MAX];
int max_idx=0;

void run_sieve(){
    sieve[2] = true;
    primes[0] = 2;
    count = 1;
    for(int i=3; i<MAX; i+=2){
        sieve[i] = true;
    }
    for(int i=3; i<17000; i+=2){
        if(!sieve[i]) continue;
        for(int j = i*i; j<MAX; j+=i){
            sieve[j] = false;
        }
    }
    for(int i=3; i<MAX; i+=2){
        if(sieve[i]) primes[count++] = i;
    }
}

mpz_class sum_digits(mpz_class n){
    clock_t t = clock();
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0;str[i]>0;i++){
        result+=str[i]-48;
    }
    printf("Done summing in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

mpz_class nc2_fast(const mpz_class &x){
    clock_t t = clock();
    int prime;
    const unsigned int n = mpz_get_ui(x.get_mpz_t());
    const unsigned int n2 = n/2;
    unsigned int m;
    unsigned int digit;
    unsigned int carry=0;
    unsigned int carries=0;
    mpz_class result = 1;
    mpz_class prime_prods = 1;
    mpz_class tmp;
    mpz_class tmp_prods[32], tmp_prime_prods[32];
    for(int i=0; i<32; i++){
        tmp_prods[i] = (mpz_class)NULL;
        tmp_prime_prods[i] = (mpz_class)NULL;
    }
    for(int i=0; i< count; i++){
        prime = primes[i];
        carry=0;
        carries=0;
        if(prime > n) break;
        if(prime > n2){
            tmp = prime;
            for(int j=0; j<32; j++){
                if(tmp_prime_prods[j] == NULL){
                    tmp_prime_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
                    tmp_prime_prods[j] = (mpz_class)NULL;
                }
            }
            continue;
        }
        m=n2;
        while(m>0){
            digit = m%prime;
            carry = (2*digit + carry >= prime) ? 1 : 0;
            carries += carry;
            m/=prime;
        }
        if(carries>0){
            tmp = 0;
            mpz_ui_pow_ui(tmp.get_mpz_t(), prime, carries);
            for(int j=0; j<32; j++){
                if(tmp_prods[j] == NULL){
                    tmp_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prods[j].get_mpz_t());
                    tmp_prods[j] = (mpz_class)NULL;
                }
            }
        }
    }
    result = 1;
    prime_prods = 1;
    for(int j=0; j<32; j++){
        if(tmp_prods[j] != NULL){
            mpz_mul(result.get_mpz_t(), result.get_mpz_t(), tmp_prods[j].get_mpz_t());
        }
        if(tmp_prime_prods[j] != NULL){
            mpz_mul(prime_prods.get_mpz_t(), prime_prods.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
        }
    }
    mpz_mul(result.get_mpz_t(), result.get_mpz_t(), prime_prods.get_mpz_t());
    printf("Done calculating binom in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

int main(int argc, char* argv[]){
    const mpz_class n = atoi(argv[1]);
    clock_t t = clock();
    run_sieve();
    printf("Done sieving in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    std::cout << n << ": " << sum_digits(nc2_fast(n)) << std::endl;
    return 0;
}
justhalf
sumber
2
Penggandaan lebih efisien jika kedua operan memiliki ukuran yang sama. Anda selalu mengalikan jumlah besar dengan jumlah kecil. Jika Anda berulang kali menggabungkan angka-angka kecil berpasangan mungkin lebih cepat (tetapi mengambil lebih banyak memori).
Keith Randall
Wow, itu membuat banyak perbedaan. Secara eksponensial lebih cepat. Saya dapat mencapai 169mil sekarang dalam 35 detik.
justhalf
Wow memang! Berapa rincian waktu untuk berbagai bagian kode Anda?
Saya sudah memasukkannya ke dalam jawaban saya. 4s dalam menghasilkan bilangan prima hingga n, 18s menghitung koefisien binomial pusat, dan sisanya 37s dalam mengubah hasilnya menjadi string dan menjumlahkan digit.
justhalf
1
Saya merasa jawaban ini harus dikontribusikan ke perpustakaan open source yang menghitung koefisien binomial. Saya tidak percaya orang lain memiliki kode secepat ini!
7

Go, 33,96 = (16300000/480000)

package main

import "math/big"

const n = 16300000

var (
    sieve     [n + 1]bool
    remaining [n + 1]int
    count     [n + 1]int
)

func main() {
    println("finding primes")
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }
        for i := p * p; i <= n; i += p {
            sieve[i] = true
        }
    }

    // count net number of times each prime appears in the result.
    println("counting factors")
    for i := 2; i <= n; i++ {
        remaining[i] = i
    }
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }

        for i := p; i <= n; i += p {
            for remaining[i]%p == 0 { // may have multiple factors of p
                remaining[i] /= p

                // count positive for n!
                count[p]++
                // count negative twice for ((n/2)!)^2
                if i <= n/2 {
                    count[p] -= 2
                }
            }
        }
    }

    // ignore all the trailing zeros
    count[2] -= count[5]
    count[5] = 0

    println("listing factors")
    var m []uint64
    for i := 0; i <= n; i++ {
        for count[i] > 0 {
            m = append(m, uint64(i))
            count[i]--
        }
    }

    println("grouping factors")
    m = group(m)

    println("multiplying")
    x := mul(m)

    println("converting to base 10")
    d := 0
    for _, c := range x.String() {
        d += int(c - '0')
    }
    println("sum of digits:", d)
}

// Return product of elements in a.
func mul(a []uint64) *big.Int {
    if len(a) == 1 {
        x := big.NewInt(0)
        x.SetUint64(a[0])
        return x
    }
    m := len(a) / 2
    x := mul(a[:m])
    y := mul(a[m:])
    x.Mul(x, y) // fast because x and y are about the same length
    return x
}

// return a slice whose members have the same product
// as the input slice, but hopefully shorter.
func group(a []uint64) []uint64 {
    var g []uint64
    r := uint64(1)
    b := 1
    for _, x := range a {
        c := bits(x)
        if b+c <= 64 {
            r *= x
            b += c
        } else {
            g = append(g, r)
            r = x
            b = c
        }
    }
    g = append(g, r)
    return g
}

// bits returns the number of bits in the representation of x
func bits(x uint64) int {
    n := 0
    for x != 0 {
        n++
        x >>= 1
    }
    return n
}

Bekerja dengan menghitung semua faktor utama dalam pembilang dan penyebut dan membatalkan faktor pencocokan. Lipat gandakan sisa makanan untuk mendapatkan hasilnya.

Lebih dari 80% waktu dihabiskan untuk mengonversi ke basis 10. Harus ada cara yang lebih baik untuk melakukan itu ...

Keith Randall
sumber
Untuk masalah yang membutuhkan pencetakan angka besar di basis 10, saya biasanya merasa senang menulis kelas BigInteger saya sendiri yang menyimpan angka di basis 1E9 ~ 2 ^ 30.
Peter Taylor
Anda saat ini menang dengan mil negara .. seperti yang mereka katakan.
@PeterTaylor: Saya sudah mencobanya, tetapi membutuhkan banyak% 1e9 dalam kode multiply, yang membuat multiply lambat.
Keith Randall
6

Python 3 (8,8 = 2,2 juta / 0,25 juta)

Ini menggunakan Python, yang tidak dikenal untuk kecepatan, jadi Anda mungkin bisa melakukan porting ini dengan lebih baik ke bahasa lain.

Generator Primes diambil dari kontes StackOverflow ini .

import numpy
import time

def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k/3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)/3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

t0 = time.clock()

N=220*10**4
n=N//2

print("N = %d" % N)
print()

print("Generating primes.")
primes = primesfrom2to(N)

t1 = time.clock()
print ("Time taken: %f" % (t1-t0))

print("Computing product.")
product = 1

for p in primes:
    p=int(p)
    carries = 0 
    carry = 0

    if p>n:
        product*=p
        continue

    m=n

    #Count carries of n+n in base p as per Kummer's Theorem
    while m:
        digit = m%p
        carry = (2*digit + carry >= p)
        carries += carry
        m//=p

    if carries >0:
        for _ in range(carries):
            product *= p

    #print(p,carries,product)

t2 = time.clock()
print ("Time taken: %f" % (t2-t1))

print("Converting number to string.")

# digit_sum = 0
# result=product

# while result:
    # digit_sum+=result%10
    # result//=10

digit_sum = 0
digit_string = str(product)

t3 = time.clock()
print ("Time taken: %f" % (t3-t2))

print("Summing digits.")
for d in str(digit_string):digit_sum+=int(d)

t4 = time.clock()
print ("Time taken: %f" % (t4-t3))
print ()

print ("Total time: %f" % (t4-t0))
print()
print("Sum of digits = %d" % digit_sum)

Gagasan utama dari algoritma ini adalah menggunakan Teorema Kummer untuk mendapatkan faktorisasi utama dari binomial. Untuk setiap perdana, kita belajar kekuatan tertinggi yang membagi jawaban, dan melipatgandakan produk yang berjalan dengan kekuatan perdana itu. Dengan cara ini, kita hanya perlu melipatgandakan satu kali untuk setiap perdana dalam faktorisasi utama jawaban.

Output menunjukkan waktu kerusakan:

N = 2200000
Generating primes.
Time taken: 0.046408
Computing product.
Time taken: 17.931472
Converting number to string.
Time taken: 39.083390
Summing digits.
Time taken: 1.502393

Total time: 58.563664

Sum of digits = 2980107

Anehnya, sebagian besar waktu dihabiskan untuk mengubah angka menjadi string untuk menjumlahkan digit-digitnya. Yang juga mengejutkan, mengonversi ke string jauh lebih cepat daripada mendapatkan digit dari pengulangan %10dan //10, meskipun seluruh string harus disimpan dalam memori.

Menghasilkan bilangan prima membutuhkan waktu yang dapat diabaikan (dan karenanya saya tidak merasa tidak adil menyalin kode yang ada). Penjumlahan digit cepat. Penggandaan aktual membutuhkan sepertiga waktu.

Mengingat penjumlahan digit tampaknya menjadi faktor pembatas, mungkin suatu algoritma untuk melipatgandakan angka dalam representasi desimal akan menghemat waktu secara total dengan memintas konversi biner / desimal.

Tidak
sumber
Ini sangat mengesankan dan membuat Anda bertanya-tanya mengapa cpython tidak menggunakan implementasi Anda!
3

Java (skor 22500/365000 = 0,062)

Saya tidak memiliki Python di mesin ini, jadi jika seseorang dapat mencetak skor ini saya akan berterima kasih. Jika tidak, itu harus menunggu.


(2nn)=k=0n(nk)2

Kemacetan adalah tambahan untuk menghitung bagian yang relevan dari segitiga Pascal (90% waktu berjalan), jadi menggunakan algoritma multiplikasi yang lebih baik tidak akan membantu.

Perhatikan bahwa yang dipanggil pertanyaan nadalah apa yang saya panggil 2n. Argumen baris perintah adalah apa yang disebut pertanyaan n.

public class CodeGolf37270 {
    public static void main(String[] args) {
        if (args.length != 1) {
            System.err.println("Usage: java CodeGolf37270 <n>");
            System.exit(1);
        }

        int two_n = Integer.parseInt(args[0]);
        // \binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2
        // Two cases:
        //   n = 2m: \binom{4m}{2m} = \binom{2m}{m}^2 + 2\sum_{k=0}^{m-1} \binom{2m}{k}^2
        //   n = 2m+1: \binom{4m+2}{2m+1} = 2\sum_{k=0}^{m} \binom{2m+1}{k}^2
        int n = two_n / 2;
        BigInt[] nCk = new BigInt[n/2 + 1];
        nCk[0] = new BigInt(1);
        for (int k = 1; k < nCk.length; k++) nCk[k] = nCk[0];
        for (int row = 2; row <= n; row++) {
            BigInt tmp = nCk[0];
            for (int col = 1; col < row && col < nCk.length; col++) {
                BigInt replacement = tmp.add(nCk[col]);
                tmp = nCk[col];
                nCk[col] = replacement;
            }
        }

        BigInt central = nCk[0]; // 1^2 = 1
        int lim = (n & 1) == 1 ? nCk.length : (nCk.length - 1);
        for (int k = 1; k < lim; k++) central = central.add(nCk[k].sq());
        central = central.add(central);
        if ((n & 1) == 0) central = central.add(nCk[nCk.length - 1].sq());

        System.out.println(central.digsum());
    }

    private static class BigInt {
        static final int B = 1000000000;
        private int[] val;

        public BigInt(int x) {
            val = new int[] { x };
        }

        private BigInt(int[] val) {
            this.val = val;
        }

        public BigInt add(BigInt that) {
            int[] left, right;
            if (val.length < that.val.length) {
                left = that.val;
                right = val;
            }
            else {
                left = val;
                right = that.val;
            }

            int[] sum = left.clone();
            int carry = 0, k = 0;
            for (; k < right.length; k++) {
                int a = sum[k] + right[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            while (carry > 0 && k < sum.length) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
                k++;
            }
            if (carry > 0) {
                int[] wider = new int[sum.length + 1];
                System.arraycopy(sum, 0, wider, 0, sum.length);
                wider[sum.length] = carry;
                sum = wider;
            }

            return new BigInt(sum);
        }

        public BigInt sq() {
            int[] rv = new int[2 * val.length];
            // Naive multiplication
            for (int i = 0; i < val.length; i++) {
                for (int j = i; j < val.length; j++) {
                    int k = i+j;
                    long c = val[i] * (long)val[j];
                    if (j > i) c <<= 1;
                    while (c > 0) {
                        c += rv[k];
                        rv[k] = (int)(c % B);
                        c /= B;
                        k++;
                    }
                }
            }

            int len = rv.length;
            while (len > 1 && rv[len - 1] == 0) len--;
            if (len < rv.length) {
                int[] rv2 = new int[len];
                System.arraycopy(rv, 0, rv2, 0, len);
                rv = rv2;
            }

            return new BigInt(rv);
        }

        public long digsum() {
            long rv = 0;
            for (int i = 0; i < val.length; i++) {
                int x = val[i];
                while (x > 0) {
                    rv += x % 10;
                    x /= 10;
                }
            }
            return rv;
        }
    }
}
Peter Taylor
sumber
Saya mendapatkan 29.500 untuk program Anda dan 440.000 untuk program referensi, sehingga itu akan menjadi skor 0,067. Ini mengkompilasi dengan Java 1.7 ( javac CodeGolf37270.java) dan mengeksekusi dengan Java 1.8 ( java CodeGolf37270 n). Saya tidak yakin apakah ada opsi optimasi yang tidak saya sadari. Saya tidak dapat mencoba mengkompilasi dengan Java 1.8, karena itu tidak diinstal dengan paket Java saya ...
Dennis
Pendekatan yang menarik. Menurut Anda mengapa menghitungnya secara berulang bisa lebih cepat daripada menggunakan rumus sederhana?
justhalf
@ justhalf, saya tidak memiliki intuisi untuk apakah akan lebih cepat atau tidak, dan saya tidak mencoba melakukan perhitungan kompleksitas. Saya melihat daftar identitas untuk koefisien binomial pusat untuk mencoba menemukan formula yang akan mudah diterapkan dengan kelas integer kustom besar yang dioptimalkan untuk mengekstraksi basis-10 digit. Dan setelah mengetahui bahwa itu tidak terlalu efisien, saya mungkin mempostingnya dan menyelamatkan orang lain dari mengulangi percobaan. (FWIW saya sedang mengerjakan multiplikasi Toom, tapi saya tidak yakin kapan saya akan diuji dan di-debug).
Peter Taylor
2

GMP - 1500000/300000 = 5.0

Meskipun jawaban ini tidak akan bersaing dengan saringan, terkadang kode pendek masih bisa mendapatkan hasil.

#include <gmpxx.h>
#include <iostream>

mpz_class sum_digits(mpz_class n)
{
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0; str[i]>0; i++)

    result += str[i] - 48;

    return result;
}


mpz_class comb_2(const mpz_class &x)
{
    const unsigned int k = mpz_get_ui(x.get_mpz_t()) / 2;
    mpz_class result = k + 1;

    for(int i=2; i<=k; i++)
    {
        result *= k + i;
        mpz_divexact_ui(result.get_mpz_t(), result.get_mpz_t(), i);
    }

    return result;
}

int main()
{
    const mpz_class n = 1500000;
    std::cout << sum_digits(comb_2(n)) << std::endl;

    return 0;
}
qwr
sumber
2

Java, kelas integer besar tersuai: 32.9 (120000000/365000)

Kelas utama cukup mudah:

import java.util.*;

public class PPCG37270 {
    public static void main(String[] args) {
        long start = System.nanoTime();

        int n = 12000000;
        if (args.length == 1) n = Integer.parseInt(args[0]);

        boolean[] sieve = new boolean[n + 1];
        int[] remaining = new int[n + 1];
        int[] count = new int[n + 1];

        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            long p2 = p * (long)p;
            if (p2 > n) continue;
            for (int i = (int)p2; i <= n; i += p) sieve[i] = true;
        }

        for (int i = 2; i <= n; i++) remaining[i] = i;
        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            for (int i = p; i <= n; i += p) {
                while (remaining[i] % p == 0) {
                    remaining[i] /= p;
                    count[p]++;
                    if (i <= n/2) count[p] -= 2;
                }
            }
        }

        count[2] -= count[5];
        count[5] = 0;

        List<BigInt> partialProd = new ArrayList<BigInt>();
        long accum = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = count[i]; j > 0; j--) {
                long tmp = accum * i;
                if (tmp < 1000000000L) accum = tmp;
                else {
                    partialProd.add(new BigInt((int)accum));
                    accum = i;
                }
            }
        }
        partialProd.add(new BigInt((int)accum));
        System.out.println(prod(partialProd).digsum());
        System.out.println((System.nanoTime() - start) / 1000000 + "ms");
    }

    private static BigInt prod(List<BigInt> vals) {
        while (vals.size() > 1) {
            int n = vals.size();
            List<BigInt> next = new ArrayList<BigInt>();
            for (int i = 0; i < n; i += 2) {
                if (i == n - 1) next.add(vals.get(i));
                else next.add(vals.get(i).mul(vals.get(i+1)));
            }
            vals = next;
        }
        return vals.get(0);
    }
}

Ini bergantung pada kelas integer besar yang dioptimalkan untuk multiplikasi dan toString(), keduanya merupakan hambatan signifikan dalam implementasi dengan java.math.BigInteger.

/**
 * A big integer class which is optimised for conversion to decimal.
 * For use in simple applications where BigInteger.toString() is a bottleneck.
 */
public class BigInt {
    // The base of the representation.
    private static final int B = 1000000000;
    // The number of decimal digits per digit of the representation.
    private static final int LOG10_B = 9;

    public static final BigInt ZERO = new BigInt(0);
    public static final BigInt ONE = new BigInt(1);

    // We use sign-magnitude representation.
    private final boolean negative;

    // Least significant digit is at val[off]; most significant is at val[off + len - 1]
    // Unless len == 1 we guarantee that val[off + len - 1] is non-zero.
    private final int[] val;
    private final int off;
    private final int len;

    // Toom-style multiplication parameters from
    // Zuras, D. (1994). More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8), 899-908.
    private static final int[][][] Q = new int[][][]{
        {},
        {},
        {{1, -1}},
        {{4, 2, 1}, {1, 1, 1}, {1, 2, 4}},
        {{8, 4, 2, 1}, {-8, 4, -2, 1}, {1, 1, 1, 1}, {1, -2, 4, -8}, {1, 2, 4, 8}}
    };
    private static final int[][][] R = new int[][][]{
        {},
        {},
        {{1, -1, 1}},
        {{-21, 2, -12, 1, -6}, {7, -1, 10, -1, 7}, {-6, 1, -12, 2, -21}},
        {{-180, 6, 2, -80, 1, 3, -180}, {-510, 4, 4, 0, -1, -1, 120}, {1530, -27, -7, 680, -7, -27, 1530}, {120, -1, -1, 0, 4, 4, -510}, {-180, 3, 1, -80, 2, 6, -180}}
    };
    private static final int[][] S = new int[][]{
        {},
        {},
        {1, 1, 1},
        {1, 6, 2, 6, 1},
        {1, 180, 120, 360, 120, 180, 1}
    };

    /**
     * Constructs a big version of an integer value.
     * @param x The value to represent.
     */
    public BigInt(int x) {
        this(Integer.toString(x));
    }

    /**
     * Constructs a big version of a long value.
     * @param x The value to represent.
     */
    public BigInt(long x) {
        this(Long.toString(x));
    }

    /**
     * Parses a decimal representation of an integer.
     * @param str The value to represent.
     */
    public BigInt(String str) {
        this(str.charAt(0) == '-', split(str));
    }

    /**
     * Constructs a sign-magnitude representation taking the entire span of the array as the range of interest.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant first.
     */
    private BigInt(boolean neg, int[] val) {
        this(neg, val, 0, val.length);
    }

    /**
     * Constructs a sign-magnitude representation taking a range of an array as the magnitude.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant at offset off, most significant at off + val - 1.
     * @param off The offset within the array.
     * @param len The number of base-B digits.
     */
    private BigInt(boolean neg, int[] val, int off, int len) {
        // Bounds checks
        if (val == null) throw new IllegalArgumentException("val");
        if (off < 0 || off >= val.length) throw new IllegalArgumentException("off");
        if (len < 1 || off + len > val.length) throw new IllegalArgumentException("len");

        this.negative = neg;
        this.val = val;
        this.off = off;
        // Enforce the invariant that this.len is 1 or val[off + len - 1] is non-zero.
        while (len > 1 && val[off + len - 1] == 0) len--;
        this.len = len;

        // Sanity check
        for (int i = 0; i < len; i++) {
            if (val[off + i] < 0) throw new IllegalArgumentException("val contains negative digits");
        }
    }

    /**
     * Splits a string into base-B digits.
     * @param str The string to parse.
     * @return An array which can be passed to the (boolean, int[]) constructor.
     */
    private static int[] split(String str) {
        if (str.charAt(0) == '-') str = str.substring(1);

        int[] arr = new int[(str.length() + LOG10_B - 1) / LOG10_B];
        int i, off;
        // Each element of arr represents LOG10_B characters except (probably) the last one.
        for (i = 0, off = str.length() - LOG10_B; off > 0; off -= LOG10_B) {
            arr[i++] = Integer.parseInt(str.substring(off, off + LOG10_B));
        }
        arr[i] = Integer.parseInt(str.substring(0, off + LOG10_B));
        return arr;
    }

    public boolean isZero() {
        return len == 1 && val[off] == 0;
    }

    public BigInt negate() {
        return new BigInt(!negative, val, off, len);
    }

    public BigInt add(BigInt that) {
        // If the signs differ, then since we use sign-magnitude representation we want to do a subtraction.
        boolean isSubtraction = negative ^ that.negative;

        BigInt left, right;
        if (len < that.len) {
            left = that;
            right = this;
        }
        else {
            left = this;
            right = that;

            // For addition I just care about the lengths of the arrays.
            // For subtraction I want the largest absolute value on the left.
            if (isSubtraction && len == that.len) {
                int cmp = compareAbsolute(that);
                if (cmp == 0) return ZERO; // Cheap special case
                if (cmp < 0) {
                    left = that;
                    right = this;
                }
            }
        }

        if (right.isZero()) return left;

        BigInt result;
        if (!isSubtraction) {
            int[] sum = new int[left.len + 1];
            // A copy here rather than using left.val in the main loops and copying remaining values
            // at the end gives a small performance boost, probably due to cache locality.
            System.arraycopy(left.val, left.off, sum, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = sum[k] + right.val[right.off + k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            for (; carry > 0 && k < left.len; k++) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            sum[left.len] = carry;

            result = new BigInt(negative, sum);
        }
        else {
            int[] diff = new int[left.len];
            System.arraycopy(left.val, left.off, diff, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = diff[k] - right.val[right.off + k] + carry;
                // Why did anyone ever think that rounding positive and negative divisions differently made sense?
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }
            for (; carry != 0 && k < left.len; k++) {
                int a = diff[k] + carry;
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }

            result = new BigInt(left.negative, diff, 0, k > left.len ? k : left.len);
        }

        return result;
    }

    private int compareAbsolute(BigInt that) {
        if (len > that.len) return 1;
        if (len < that.len) return -1;

        for (int i = len - 1; i >= 0; i--) {
            if (val[off + i] > that.val[that.off + i]) return 1;
            if (val[off + i] < that.val[that.off + i]) return -1;
        }

        return 0;
    }

    public BigInt mul(BigInt that) {
        if (isZero() || that.isZero()) return ZERO;

        if (len == 1) return that.mulSmall(negative ? -val[off] : val[off]);
        if (that.len == 1) return mulSmall(that.negative ? -that.val[that.off] : that.val[that.off]);

        int shorter = len < that.len ? len : that.len;
        BigInt result;
        // Cutoffs have been hand-tuned.
        if (shorter > 300) result = mulToom(3, that);
        else if (shorter > 28) result = mulToom(2, that);
        else result = mulNaive(that);

        return result;
    }

    BigInt mulSmall(int m) {
        if (m == 0) return ZERO;
        if (m == 1) return this;
        if (m == -1) return negate();

        // We want to do the magnitude calculation with a positive multiplicand.
        boolean neg = negative;
        if (m < 0) {
            neg = !neg;
            m = -m;
        }

        int[] pr = new int[len + 1];
        int carry = 0;
        for (int i = 0; i < len; i++) {
            long t = val[off + i] * (long)m + carry;
            pr[i] = (int)(t % B);
            carry = (int)(t / B);
        }
        pr[len] = carry;
        return new BigInt(neg, pr);
    }

    // NB This truncates.
    BigInt divSmall(int d) {
        if (d == 0) throw new ArithmeticException();
        if (d == 1) return this;
        if (d == -1) return negate();

        // We want to do the magnitude calculation with a positive divisor.
        boolean neg = negative;
        if (d < 0) {
            neg = !neg;
            d = -d;
        }

        int[] div = new int[len];
        int rem = 0;
        for (int i = len - 1; i >= 0; i--) {
            long t = val[off + i] + rem * (long)B;
            div[i] = (int)(t / d);
            rem = (int)(t % d);
        }

        return new BigInt(neg, div);
    }

    BigInt mulNaive(BigInt that) {
        int[] rv = new int[len + that.len];
        // Naive multiplication
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < that.len; j++) {
                int k = i + j;
                long c = val[off + i] * (long)that.val[that.off + j];
                while (c > 0) {
                    c += rv[k];
                    rv[k] = (int)(c % B);
                    c /= B;
                    k++;
                }
            }
        }

        return new BigInt(this.negative ^ that.negative, rv);
    }

    private BigInt mulToom(int k, BigInt that) {
        // We split each number into k parts of m base-B digits each.
        // m = ceil(longer / k)
        int m = ((len > that.len ? len : that.len) + k - 1) / k;

        // Perform the splitting and evaluation steps of Toom-Cook.
        BigInt[] f1 = this.toomFwd(k, m);
        BigInt[] f2 = that.toomFwd(k, m);

        // Pointwise multiplication.
        for (int i = 0; i < f1.length; i++) f1[i] = f1[i].mul(f2[i]);

        // Inverse (or interpolation) and recomposition.
        return toomBk(k, m, f1, negative ^ that.negative, val[off], that.val[that.off]);
    }

    // Splits a number into k parts of m base-B digits each and does the polynomial evaluation.
    private BigInt[] toomFwd(int k, int m) {
        // Split.
        BigInt[] a = new BigInt[k];
        for (int i = 0; i < k; i++) {
            int o = i * m;
            if (o >= len) a[i] = ZERO;
            else {
                int l = m;
                if (o + l > len) l = len - o;
                // Ignore signs for now.
                a[i] = new BigInt(false, val, off + o, l);
            }
        }

        // Evaluate
        return transform(Q[k], a);
    }

    private BigInt toomBk(int k, int m, BigInt[] f, boolean neg, int lsd1, int lsd2) {
        // Inverse (or interpolation).
        BigInt[] b = transform(R[k], f);

        // Recomposition: add at suitable offsets, dividing by the normalisation factors
        BigInt prod = ZERO;
        int[] s = S[k];
        for (int i = 0; i < b.length; i++) {
            int[] shifted = new int[i * m + b[i].len];
            System.arraycopy(b[i].val, b[i].off, shifted, i * m, b[i].len);
            prod = prod.add(new BigInt(neg ^ b[i].negative, shifted).divSmall(s[i]));
        }

        // Handle the remainders.
        // In the worst case the absolute value of the sum of the remainders is s.length, so pretty small.
        // It should be easy enough to work out whether to go up or down.
        int lsd = (int)((lsd1 * (long)lsd2) % B);
        int err = lsd - prod.val[prod.off];
        if (err > B / 2) err -= B / 2;
        if (err < -B / 2) err += B / 2;
        return prod.add(new BigInt(err));
    }

    /**
     * Multiplies a matrix of small integers and a vector of big ones.
     * The matrix has a implicit leading row [1 0 ... 0] and an implicit trailing row [0 ... 0 1].
     * @param m The matrix.
     * @param v The vector.
     * @return m v
     */
    private BigInt[] transform(int[][] m, BigInt[] v) {
        BigInt[] b = new BigInt[m.length + 2];
        b[0] = v[0];
        for (int i = 0; i < m.length; i++) {
            BigInt s = ZERO;
            for (int j = 0; j < m[i].length; j++) s = s.add(v[j].mulSmall(m[i][j]));
            b[i + 1] = s;
        }
        b[b.length - 1] = v[v.length - 1];

        return b;
    }

    /**
     * Sums the digits of this integer.
     * @return The sum of the digits of this integer.
     */
    public long digsum() {
        long rv = 0;
        for (int i = 0; i < len; i++) {
            int x = val[off + i];
            while (x > 0) {
                rv += x % 10;
                x /= 10;
            }
        }
        return rv;
    }
}

Kemacetan besar adalah multiplikasi naif (60%), diikuti oleh multiplikasi lainnya (37%) dan pengayakan (3%). The digsum()panggilan tidak signifikan.

Kinerja diukur dengan OpenJDK 7 (64 bit).

Peter Taylor
sumber
Sangat bagus. Terima kasih.
1

Python 2 (PyPy), 1.134.000 / 486.000 = 2,32

#/!usr/bin/pypy
n=input(); a, b, c=1, 1, 2**((n+2)/4)
for i in range(n-1, n/2, -2): a*=i
for i in range(2, n/4+1): b*=i
print sum(map(int, str(a*c/b)))

Hasil: 1,537,506

Fakta menyenangkan: Hambatan kode Anda adalah menambahkan angka, bukan menghitung koefisien binomial.

Dennis
sumber
Mengapa python sangat lambat dalam menambahkan angka? Anda dan xnor mengatakan itu. Itu membuat saya penasaran, jadi saya mencatat milik saya. Itu datang kurang dari satu detik untuk jumlah bagian (Jawa).
Geobits
@ Geobits Hmm, penasaran. Apakah Java juga dapat melakukan konversi biner-desimal dengan cepat? Itu mewakili bilangan bulat dalam biner, kan?
xnor
Itu pertanyaan yang bagus. Untuk integer / Integer / long / Long saya tahu itu biner. Saya tidak yakin apa representasi internal dari BigInteger. Jika desimal, itu pasti akan menjelaskan mengapa lambat dalam matematika tetapi cepat untuk mengkonversi ke string. Mungkin lihat besok.
Geobits
@ Geobits, representasi internal BigInteger adalah basis 2.
Peter Taylor
Saya selalu berasumsi begitu, tetapi itu membuat saya bertanya-tanya. Sepertinya itu memecahnya menjadi potongan-potongan berukuran panjang dan mengubahnya dengan cara itu, setidaknya di OpenJDK.
Geobits
1

Java (2,020,000 / 491,000) = 4,11

diperbarui, sebelumnya 2.24

Jawa BigInteger bukan penghasil angka tercepat, tetapi lebih baik daripada tidak sama sekali.

Rumus dasar untuk ini tampaknya n! / ((n/2)!^2), tetapi tampaknya seperti sekelompok perkalian yang berlebihan.

Anda bisa mendapatkan peningkatan yang signifikan dengan menghilangkan semua faktor utama yang ditemukan di pembilang dan penyebut. Untuk melakukan ini, saya pertama kali menjalankan ayakan perdana sederhana. Kemudian untuk setiap prime, saya menghitung berapa daya yang dibutuhkan untuk dinaikkan. Kenaikan setiap kali saya melihat faktor dalam pembilang, penurunan untuk penyebut.

Saya menangani keduanya secara terpisah (dan pertama), karena mudah untuk menghitung / menghilangkannya sebelum memfaktorkan.

Setelah selesai, Anda memiliki jumlah minimum perkalian yang diperlukan, yang bagus karena perkalian BigInt lambat .

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;

public class CentBiCo {
    public static void main(String[] args) {
        int n = 2020000;
        long time = System.currentTimeMillis();
        sieve(n);
        System.out.println(sumDigits(cbc(n)));
        System.out.println(System.currentTimeMillis()-time);
    }

    static boolean[] sieve;
    static List<Integer> primes;
    static void sieve(int n){
        primes = new ArrayList<Integer>((int)(Math.sqrt(n)));
        sieve = new boolean[n];
        sieve[2]=true;
        for(int i=3;i<sieve.length;i+=2)
            if(i%2==1)
                sieve[i] = true;
        for(int i=3;i<sieve.length;i+=2){
            if(!sieve[i])
                continue;
            for(int j=i*2;j<sieve.length;j+=i)
                sieve[j] = false;
        }
        for(int i=2;i<sieve.length;i++)
            if(sieve[i])
                primes.add(i);
    }

    static int[] factors;
    static void addFactors(int n, int flip){
        for(int k=0;primes.get(k)<=n;){
            int i = primes.get(k);
            if(n%i==0){
                factors[i] += flip;
                n /= i;
            } else {
                if(++k == primes.size())
                    break;
            }
        }
        factors[n]++;
    }

    static BigInteger cbc(int n){
        factors = new int[n+1];
        int x = n/2;
        for(int i=x%2<1?x+1:x+2;i<n;i+=2)
            addFactors(i,1);
        factors[2] = x;
        for(int i=1;i<=x/2;i++){
            int j=i;
            while(j%2<1 && factors[2] > 1){
                j=j/2;
                factors[2]--;
            }
            addFactors(j,-1);
            factors[2]--;
        }
        BigInteger cbc = BigInteger.ONE;
        for(int i=3;i<factors.length;i++){
            if(factors[i]>0)
                cbc = cbc.multiply(BigInteger.valueOf(i).pow(factors[i]));
        }
        return cbc.shiftLeft(factors[2]);
    }

    static long sumDigits(BigInteger in){
        long sum = 0;
        String str = in.toString();
        for(int i=0;i<str.length();i++)
            sum += str.charAt(i)-'0';
        return sum;
    }
}

Oh, dan jumlah output untuk n = 2020000 adalah 2735298, untuk keperluan verifikasi.

Geobit
sumber