Hard code golf: Regex untuk dapat dibagi dengan 7

75

Matthias Goergens memiliki regex 25.604 karakter (turun dari karakter asli 63.993) untuk mencocokkan angka yang dapat dibagi dengan 7, tetapi itu termasuk banyak bulu: kurung redundan, distribusi ( xx|xy|yx|yydaripada [xy]{2}) dan masalah lainnya, meskipun saya yakin ada awal baru akan sangat membantu dalam menghemat ruang. Seberapa kecil ini bisa dibuat?

Setiap variasi ekspresi reguler yang masuk akal diizinkan, tetapi tidak ada kode yang dapat dieksekusi di regex.

Ekspresi reguler harus cocok dengan semua string yang berisi representasi desimal dari angka yang dapat dibagi oleh 7 dan tidak ada yang lain. Kredit ekstra untuk regex yang tidak memungkinkan 0s awal.

Charles
sumber
Apa maksud tepatnya? Apakah harus mencocokkan semua angka dengan ukuran apa saja yang dapat dibagi oleh 7, atau, misalnya, hanya uints 32-bit yang valid?
Peter Taylor
2
@ Peter Taylor: Ini harus cocok dengan semua string yang merupakan representasi desimal dari angka yang dapat dibagi oleh 7. Kredit ekstra untuk solusi yang melarang 0s terkemuka.
Charles
1
Kebetulan ... perlu regex tidak cocok dengan angka yang tidak dapat dibagi oleh 7?
stan
@ boothby: Tentu saja, kalau tidak, Anda bisa menggunakan ekspresi kosong.
Charles
2
@ n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳ Ya, 0 harus diizinkan di kedua versi.
Charles

Jawaban:

24

10791 karakter, angka nol di depan diizinkan

(0|7|46*[29]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(2|9|46*4)(3|56*4)*(1|8|56*[29])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(6|46*[18]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(2|9|46*4)(3|56*4)*(0|7|56*[18])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(1|8|36*4)(3|56*4)*(0|7|56*[18])))(2|9|53*[07]|(0|7|53*5)(6|43*5)*(1|8|43*[07])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))))*(3|53*[18]|(0|7|53*5)(6|43*5)*(2|9|43*[18])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))))+

10795 karakter, angka nol di depan dilarang

0|((foo)0*)+, tempat regex di atas berada (0|foo)+.

Penjelasan

Angka-angka yang dapat dibagi oleh 7 dicocokkan oleh otomat berhingga yang jelas dengan 7 keadaan Q = {0, ..., 6}, keadaan awal dan akhir 0, dan transisi d: i ↦ (10i + d) mod 7. Saya mengubah robot terbatas ini menjadi ekspresi reguler, menggunakan rekursi pada set negara perantara yang diizinkan:

Mengingat i, j ∈ Q dan S ⊆ Q, misalkan f (i, S, j) menjadi ekspresi reguler yang cocok dengan semua jalur otomat dari i ke j hanya menggunakan kondisi antara dalam S. Kemudian,

f (i, ∅, j) = (j - 10i) mod 7,

f (i, S ∪ {k}, j) = f (i, S, j) ∣ f (i, S, k) f (k, S, k) * f (k, S, j).

Saya menggunakan pemrograman dinamis untuk memilih k sehingga meminimalkan panjang ekspresi yang dihasilkan.

Anders Kaseorg
sumber
Saya pikir Anda harus menambahkan 2 karakter di dalam case nol terkemuka, karena saya kira nol harus diizinkan0|((foo)0*)+
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳
3
Saya telah mengomentari pertanyaan itu, tetapi dengan akal sehat, "no leading zero" biasanya berarti tidak ada leading redundant 0, tetapi tidak mengecualikan angka nol.
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳
95

13.755 12.699 12.731 Karakter

Regex ini tidak menolak awalan nol.

(0|7|[18]5*4|(2|9|[18]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))|(6|[18]5*3|(2|9|[18]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))(2|9|45*3|(5|45*6)(3|[29]5*6)*(0|7|[29]5*3)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))*(3|45*4|(5|45*6)(3|[29]5*6)*(1|8|[29]5*4)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))))*

Ini diuji dengan The Regex Coach .

Bagaimana Kami Sampai di Sana

Regex di atas diproduksi dengan terlebih dahulu membangun DFA yang akan menerima input yang kita inginkan (desimal dapat dibagi dengan 7) dan kemudian mengonversi ke Ekspresi Reguler dan memperbaiki notaion

Untuk memahami ini, ada baiknya terlebih dahulu membuat DFA yang menerima bahasa berikut:

L = {w | w is a binary representation of an integer divisible by 7 }

Artinya, itu akan 'mencocokkan' angka-angka biner yang dapat dibagi oleh 7.

DFA terlihat seperti ini:

Mod 7 NFA

Bagaimana itu bekerja

Anda menyimpan nilai saat ini Ayang mewakili nilai bit yang telah dibaca DFA. Ketika Anda membaca 0lalu A = 2*Adan ketika Anda membaca a 1 A = 2*A + 1. Pada setiap langkah Anda menghitung A mod 7maka Anda pergi ke negara yang mewakili jawabannya.

Jadi uji coba:

Kita membaca di 10101mana representasi biner untuk 21 dalam desimal.

  1. Kami mulai di negara bagian q0, saat iniA=0
  2. Kami membaca 1, dari 'aturan' di atas A = 2*A + 1begitu A = 1. A mod 7 = 1jadi kami pindah ke negaraq1
  3. Kita membaca 0, A = 2*A = 2, A mod 7 = 2jadi kami pindah keq2
  4. Membaca 1, A = 2*A + 1 = 5, A mod 7 = 5, pindah keq5
  5. Membaca 0, A = 2*A = 10, A mod 7 = 3, pindah keq3
  6. Membaca 1, A = 2*A + 1 = 21, A mod 7 = 0, pindah keq0
  7. Input diterima sehingga jumlahnya 10101habis dibagi 7!

Mengubah DFA ke Ekspresi Reguler adalah tugas yang sulit, jadi saya meminta JFLAP melakukannya untuk saya, menghasilkan yang berikut:

(0|111|100((1|00)0)*011|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011)|(110|100((1|00)0)*010|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))(1|0(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))*0(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011))*

Untuk Angka Desimal

Prosesnya hampir sama:

Saya membuat DFA yang menerima bahasa:

L = {w | w is a decimal number that is divisible by 7}

Inilah DFA:

Logikanya mirip, jumlah negara yang sama hanya lebih banyak transisi untuk menangani semua angka desimal angka tambahan.

Sekarang aturan untuk mengubah Apada setiap langkah adalah: ketika Anda membaca angka desimal n: A = 10*A + n. Kemudian lagi Anda hanya mod Adengan 7 dan pergi ke negara bagian berikutnya.

Revisi

Revisi 5

Ekspresi reguler di atas sekarang menolak angka yang mengarah nol - selain dari nol itu sendiri tentu saja.

Ini membuat DFA sedikit berbeda, pada dasarnya Anda bercabang dari simpul awal ketika Anda membaca nol pertama. Membaca nol lainnya membuat Anda menjadi loop tak terbatas pada status bercabang. Saya belum memperbaiki diagram untuk menunjukkan ini.

Revisi 7

Melakukan beberapa "metaregex" dan mempersingkat regex saya dengan mengganti beberapa serikat pekerja dengan kelas karakter.

Revisi 10 dan 11 (oleh nhahtdh)

Modifikasi penulis untuk menolak memimpin nol tidak benar. Itu membuat regex gagal untuk mencocokkan angka yang valid, seperti 1110 (desimal = 14) dalam kasus binary regex, dan 70 dalam kasus regex desimal. Revisi ini mengembalikan modifikasi, dan akibatnya, memungkinkan nol nol di awal dan string kosong yang cocok.

Revisi ini meningkatkan ukuran regex desimal, karena mengoreksi bug di regex asli, yang disebabkan oleh hilangnya tepi (9) dari negara 5 ke negara 3 di DFA asli.

Grifon
sumber
Saya akan mengklarifikasi pertanyaan untuk menentukan desimal. Ya, jauh lebih mudah di pangkalan b di mana 7 | b (b-1).
Charles
Saya telah mengubah jawaban saya. Desimal semuanya baik: D
Griffin
Terlambat bagi saya untuk mengubah komentar saya, meskipun ... maksud saya 7 | B (B-1) di mana B adalah kekuatan kecil b. Binary memiliki regex singkat sejak 7 | 8 (8-1). Desimal lebih besar sejak 7 | 999999000000 adalah yang terkecil yang berfungsi.
Charles
3
btw saya pikir Anda menggunakan DFA , bukan NFA
binarycode
2
Tidak satu pun dari regex yang ditunjukkan dalam jawaban ini benar. Yang biner tidak cocok 1110, dan yang untuk desimal tidak cocok 70. Ini diuji dalam python dan perl. (Diperlukan python untuk mengonversi setiap (menjadi yang (?:pertama)
Daniel Martin
35

.NET regex, 119 118 105 byte

^(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

111 karakter menolak 0s awal:

^(?!0.)(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

113 karakter yang menolak 0s awal dan mendukung angka negatif:

^-?(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

Coba di sini.

Penjelasan (dari versi sebelumnya)

Ini menggunakan teknik yang digunakan oleh berbagai jawaban dalam pertanyaan ini: Polisi dan Perampok: Reverse Regex Golf . .NET regex memiliki fitur yang disebut grup balancing, yang dapat digunakan untuk melakukan aritmatika. (?<a>)mendorong grup a. (?<-a>)muncul itu dan tidak cocok jika tidak ada grup yang acocok sebelumnya.

  • (?>...)Cocokkan dan jangan mundur nanti. Jadi itu akan selalu cocok hanya dengan alternatif yang cocok pertama.
  • ((?<-t>)(){3}|){6} Lipat gandakan jumlah grup t dengan 3. Simpan hasilnya dalam jumlah grup 2.
  • (?=[1468](?<2>)|)(?=[2569](?<2>){2}|)([3-6](?<2>){3}|\d) Cocokkan angka, dan jumlah grup 2 itu.
  • ((?<-2>){7}|){3} Hapus grup 2 beberapa dari 7 kali.
  • ((?<t-2>)|){6} Hapus grup 2 dan cocokkan dengan jumlah grup yang sama t.
  • $(?(t)a)Jika masih ada grup yang cocok, cocokkan asetelah akhir string, yang tidak mungkin.

Saya pikir versi 103 byte ini juga harus berfungsi, tetapi tidak menemukan solusi bug di kompiler.

^(?(?(?((?<3>){2}[2569]|)([3-6])?((?<-1>)(){3}|){7})(?<3>[1468])?((?<-3>){7}|(?<1-3>)|){9})\d)+$(?(1)a)
jimmy23013
sumber
Sangat singkat. Saya ingin penjelasan tentang cara kerjanya!
Charles
@ Charles Diedit.
jimmy23013
Saya tidak berpikir ini akan dikalahkan, tapi saya lebih suka setidaknya harus menerapkan DFA dengan rekursi, ini hanya gila. Saya ingin tahu apakah seseorang dapat membuktikan atau menyangkal .NET regex sebagai Turing selesai.
ThePlasmaRailgun
@ThePlasmaRailgun .NET regex tidak Turing selesai, karena tidak memungkinkan pengulangan tangkapan kosong lebih dari batas bawah ( contoh ). Jadi setiap grup dengan quantifiers hanya dapat memiliki sejumlah alternatif yang terbatas jika inputnya memiliki panjang yang tetap.
jimmy23013
Ah. Tanpa ikatan itu, apakah Turing akan lengkap?
ThePlasmaRailgun
30

468 karakter

Citarasa regex Ruby memungkinkan rekursi (meskipun ini semacam kecurangan), sehingga mudah untuk menerapkan DFA yang mengenali angka yang dapat dibagi dengan 7 menggunakan itu. Setiap grup bernama berkorespondensi dengan status, dan setiap cabang dalam pergantian mengkonsumsi satu digit dan kemudian melompat ke kondisi yang sesuai. Jika akhir angka tercapai, regex hanya cocok jika mesin berada dalam grup "A", jika tidak maka gagal.

Ia mengenali nol di depan.

(?!$)(?>(|(?<B>4\g<A>|5\g<B>|6\g<C>|[07]\g<D>|[18]\g<E>|[29]\g<F>|3\g<G>))(|(?<C>[18]\g<A>|[29]\g<B>|3\g<C>|4\g<D>|5\g<E>|6\g<F>|[07]\g<G>))(|(?<D>5\g<A>|6\g<B>|[07]\g<C>|[18]\g<D>|[29]\g<E>|3\g<F>|4\g<G>))(|(?<E>[29]\g<A>|3\g<B>|4\g<C>|5\g<D>|6\g<E>|[07]\g<F>|[18]\g<G>))(|(?<F>6\g<A>|[07]\g<B>|[18]\g<C>|[29]\g<D>|3\g<E>|4\g<F>|5\g<G>))(|(?<G>3\g<A>|4\g<B>|5\g<C>|6\g<D>|[07]\g<E>|[18]\g<F>|[29]\g<G>)))(?<A>$|[07]\g<A>|[18]\g<B>|[29]\g<C>|3\g<D>|4\g<E>|5\g<F>|6\g<G>)
Lowjacker
sumber
3
Saya berniat untuk tidak mengizinkannya, tetapi saya rasa tidak. Ini memungkinkan solusi yang sangat singkat dalam bahasa Ruby, Perl, PCRE, dan .NET.
Charles
2
rekursi menjadikannya tata bahasa bebas konteks (jika dapat memutuskan {a*b*|a and b an equal amount of times})
ratchet freak
@ scratchet freak: Saya tahu bahwa ini secara teknis bukan ekspresi reguler, tetapi pertanyaannya menyatakan bahwa setiap rasa regex dapat diterima.
Lowjacker
Saya membuat generator berdasarkan posting Anda yang menciptakan ini untuk pembagi dan basis sewenang-wenang: github.com/ThePlasmaRailgun/DivisibilityRegexes . Ini juga memiliki opsi untuk menghasilkan file .jff untuk JFLAP.
ThePlasmaRailgun
24

Saya benar-benar terkesan dengan jawaban Griffin dan perlu memikirkan cara kerjanya! Hasilnya adalah JavaScript berikut. (Ini karakter 3.5k, yang lebih pendek!) genFungsi mengambil pembagi dan basis dan menghasilkan ekspresi reguler yang cocok dengan angka-angka dalam basis yang ditentukan yang dapat dibagi oleh pembagi itu.

Saya telah menggeneralisasi NFA Griffin untuk basis apa pun: nfafungsinya mengambil pembagi dan basis dan mengembalikan array transisi dua dimensi. Input yang diperlukan untuk beralih dari status 0 ke kondisi 2, misalnya, adalah states[0][2] == "1".

The reducefungsi mengambil di statesarray dan berjalan melalui algoritma ini untuk menerjemahkan NFA untuk regex. Regex yang dihasilkan sangat besar dan terlihat seperti mereka memiliki banyak klausa yang berlebihan, meskipun ada upaya saya untuk optimasi. Regex untuk 7 basis 10 sekitar ~ 67k karakter; Firefox melempar "InternalError" untuk n> 5 mencoba menguraikan regex; menjalankan regex di Chrome mulai lambat untuk n> 6.

Ada juga testfungsi yang mengambil regex dan basis dan menjalankannya terhadap angka 0 hingga 100, jadi test(gen(5)) == [0, 5, 10, 15, ...].

Meskipun hasilnya suboptimal, ini adalah kesempatan belajar yang fantastis, dan saya harap beberapa kode ini akan berguna di masa depan!

function gen(b, base) {
    var states = nfa(b, base)
    for (var i = 0; i < states.length; i++)
        states = reduce(states, i);
    return states[0][0] != 'phi' && new RegExp('^' + wrap(states[0][0]) + '$');
}

function test(reg, base) {
    if (!base)
        base = 10;

    var x = [];
    for (var i = 0; i < 100; i++)
        x.push(i);
    return x.map(function (a) {return a.toString(base)}).filter(reg.test.bind(reg)).map(function (a) {return parseInt(a, base)})
}

function nfa(b, base) {
    if (!base)
        base = 10;

    var states = [];
    for (var i = 0; i < b; i++) {
        states[i] = [];
        for (var j = 0; j < b; j++)
            states[i][j] = [];
    }

    for (var i = 0; i < b; i++)
        for (var n = 0; n < base; n++)
            states[i][(i * base + n) % b].push(n.toString());

    for (var i = 0; i < b; i++)
        for (var j = 0; j < b; j++)
            states[i][j] = states[i][j].length > 1 ? '[' + states[i][j].join('') + ']' : (states[i][j][0] || 'phi');
    return states;
}

// http://www.cs.umbc.edu/~squire/cs451_l7.html
function reduce(states, n) {
    var s = states.length;
    var reduced = [];
    for (var i = 0; i < s; i++) {
        reduced[i] = [];
        for (var j = 0; j < s; j++) {
            // reduced[i][j] = wrap(states[i][n] + wrap(states[n][n]) + '*' + states[n][j] + '|' + states[i][j]);
            reduced[i][j] = '';

            if (states[i][n] == 'phi' || states[n][j] == 'phi') {
                reduced[i][j] = states[i][j];
                continue;
            }

            if (states[i][n] != states[n][n])
                reduced[i][j] += wrap(states[i][n]);

            if (states[n][n] != 'phi') {
                reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] && states[n][j] == states[n][n])
                    reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] || states[n][j] == states[n][n])
                    reduced[i][j] += '+';
                else
                    reduced[i][j] += '*';
            }

            if (states[n][j] != states[n][n])
                reduced[i][j] += wrap(states[n][j]);

            reduced[i][j] = states[i][j] == 'phi' ? wrap(reduced[i][j]) : alternate(reduced[i][j], states[i][j]);
        }
    }
    return reduced;
}

function matching(x, open, close) {
    // Test if the parens are actually matching
    if ('(['.indexOf(x.charAt(open)) != -1 && ')]'.indexOf(x.charAt(close)) != -1) {
        var count = 0;
        for (var i = open; i <= close; i++) {
            if ('(['.indexOf(x.charAt(i)) != -1)
                count++;
            else if (')]'.indexOf(x.charAt(i)) != -1) {
                count--;

                if (count == 0)
                    return i == close;
            }
        }
    }

    return false;
}

function wrap(x) {
    if (x.length < 2 || matching(x, 0, x.length - 1))
        return x;
    return '(' + x + ')';
}

function optional(cond) {
    if (matching(cond, 0, cond.length - 2)) {
        var op = cond.charAt(cond.length - 1);
        if (op == '+')
            return cond.slice(0, -1) + '*';
        else if (op == '*' || op == '?')
            return cond;
    } else if (matching(cond, 0, cond.length - 1))
        return optional(cond.slice(1, -1));

    return wrap(cond) + '?';
}

function alternate(cond1, cond2) {
    cond2 = wrap(cond2);
    var index = cond1.indexOf(cond2);
    var len = cond2.length;
    var cond = '';

    if (index == 0) {
        var op = cond1.charAt(len);
        if (op == '*')
            cond = cond2 + '+' + optional(cond1.slice(len));
        else if (op == '+')
            cond = cond1;
        else 
            cond = cond2 + optional(cond1.slice(len));
    } else if (index == cond1.length - len)
        cond = optional(cond1.slice(0, index)) + cond2;
    else if (cond1.length == 1 && cond2.length == 1)
        cond = '[' + cond1 + cond2 + ']';
    else
        cond = cond1 + '|' + cond2;

    return wrap(cond);
}
Casey Chu
sumber
7

Perl / PCRE, 370 karakter

^(?!$|0.)([07]*(?:[18](?2)|[29](?3)|3(?4)|4(?5)|5(?7)|6(?9)|$))|(5*(?:[07](?4)|[18](?5)|[29](?7)|4(?1)|6(?3)|3(?9)))(3*(?:[18](?1)|[29](?2)|[07](?9)|4(?4)|5(?5)|6(?7)))([18]*(?:[07](?3)|[29](?5)|5(?1)|6(?2)|3(?7)|4(?9)))(6*([29](?1)|[07](?7)|[18](?9)|3(?2)|4(?3)|5(?4)))(4*([07](?2)|[18](?3)|[29](?4)|6(?1)|3(?5)|5(?9)))([29]*([07](?5)|[18](?7)|3(?1)|4(?2)|5(?3)|6(?4)))

Menolak string kosong, serta string dengan awalan 0 (kecuali "0").

Grimmy
sumber
@Charles Ini adalah PHP PCRE yang valid, dan memang berfungsi untuk memvalidasi keterbagian - coba di sini
cat