Menghitung polyomino umum

12

Tantangan ini akan membuat Anda menghitung pseudo- polyforms pada ubin persegi snub .

Saya pikir urutan ini belum ada pada OEIS , jadi tantangan ini ada untuk menghitung sebanyak mungkin istilah untuk urutan ini.

Pembaruan: ini sekarang di OEIS sebagai A309159 : Jumlah polyforms umum pada snub square tiling dengan n sel.

Definisi

Ubin persegi snub adalah ubin semiregular dari bidang yang terdiri dari segitiga sama sisi dan bujur sangkar.

ubin persegi

Pseudo-polyform pada snub square tiling adalah sosok bidang yang dibangun dengan menyatukan segitiga-segitiga ini dan bujur sangkar di sepanjang sisi yang dibagikan, dianalogikan dengan polyomino. Berikut adalah contoh pseudo-polyform enam sel dan delapan sel:

masukkan deskripsi gambar di sini

Contohnya

Karena n = 1ada dua pseudo-polyforms 1-sel, yaitu kuadrat dan segitiga:

Sebab n = 2ada dua pseudo-polyforms 2-sel, yaitu persegi dengan segitiga dan dua segitiga.

Karena n = 3ada empat pseudo-polyforms 3-sel.

Tantangan

Tujuan dari tantangan ini adalah untuk menghitung sebanyak mungkin istilah dalam urutan ini, yang dimulai 2, 2, 4, ... dan di mana istilah ke-n adalah jumlah pseudo-polyforms sel-n hingga rotasi dan refleksi.

Jalankan kode Anda selama yang Anda inginkan. Pemenang dari tantangan ini adalah pengguna yang memposting sebagian besar syarat urutan, bersama dengan kode mereka. Jika dua pengguna memposting jumlah istilah yang sama, maka siapa pun yang memposting istilah terakhir mereka yang paling awal akan menang.

(Setelah ada cukup istilah yang diketahui untuk membuktikan bahwa urutan ini belum ada di OEIS, saya akan membuat entri di OEIS dan mendaftarkan kontributor sebagai penulis bersama jika dia menginginkannya.)

Peter Kagey
sumber
Dalam tantangan kode-tantangan , jawaban harus berupa kode, bukan persyaratan urutan. Juga, jumlah istilah yang berhasil ditemukan sebelum terlalu banyak waktu berlalu menurut pendapat mereka (atau sebelum program meluap) bukanlah kriteria kemenangan yang objektif.
Erik the Outgolfer
@EriktheOutgolfer, terakhir kali saya menggunakan kode-tantangan untuk masalah gaya serupa , dan itu bekerja dengan sangat baik.
Peter Kagey
Hm ... Saya tidak setuju pada bagian bahwa Anda dapat menjalankan program selama yang Anda suka, karena orang yang berbeda memiliki tingkat kesabaran yang berbeda (misalnya orang 1 mungkin membiarkannya berjalan selama 7 hari, sementara orang 2 mungkin membiarkannya berjalan selama 30 hari), dan karena itu subjektif, meskipun yang lain mungkin menganggapnya "subjektif baik". Hanya mengatakan bahwa itu tidak sepenuhnya objektif. Mengenai tag kode-tantangan , saya hanya ingin memastikan Anda meminta kode dan bukan hanya daftar istilah (gaya Project Euler). : P
Erik the Outgolfer
1
Adakah yang ingin mengkonfirmasi atau membantah 2, 2, 4, 10, 28, 79, 235, 720, 2254, 7146, 22927, 74137, 241461, 790838, 2603210, 8604861?
Peter Taylor
1
@PeterTaylor Saya mendapatkan nomor yang sama
Christian Sievers

Jawaban:

7

Haskell

Sekarang bukan hanya dokumen komentar bahwa Peter Taylor adalah orang pertama yang memberikan cukup istilah untuk mencari di OEIS, saya dapat memberikan hasil saya.

( 1 - 10) 2, 2, 4, 10, 28, 79, 235, 720, 2254, 7146,
(11 - 15) 22927, 74137, 241461, 790838, 2603210,
(16 - 18) 8604861, 28549166, 95027832,
(19 - 22) 317229779, 1061764660, 3562113987, 11976146355

Sebelumnya, saya menghitung polyomino heksagonal . Kecuali untuk beberapa optimasi, apa yang saya lakukan di sini sangat mirip.

Elemen-elemen ubin diwakili seperti ini: Anda dapat pergi dalam garis yang hampir lurus dari kiri ke kanan (dalam gambar pertama), bergantian antara kotak dan persegi panjang. Ada garis-garis lebih lanjut yang hampir paralel, bergoyang ke arah yang berlawanan. Bersama-sama, mereka kehilangan beberapa segitiga. Ada garis paralel hampir lurus yang serupa dari bawah ke atas, berisi segitiga yang hilang. Sekarang abaikan goyangan dan gunakan sistem koordinat Cartesius, tetapi hanya gunakan angka ganjil untuk koordinat kotak. Kemudian segitiga secara alami mendapatkan pasangan koordinat dengan satu koordinat genap dan satu koordinat ganjil. Pasangan dengan kedua koordinat bahkan tidak mewakili elemen ubin.

(Anda juga bisa menggunakan angka genap untuk koordinat kotak. Saya kira saya memutuskan cara ini karena saya memikirkan refleksi sebelum rotasi.)

Simpan program dalam file dengan nama suka cgp.hsdan kompilasi dengan ghc -O2 -o cgp cgp.hs. Dibutuhkan satu argumen baris perintah numerik dan menghitung jumlah poliomino dengan ukuran itu, atau tidak sama sekali, dalam hal ini ia menghitung nilai sampai berhenti.

{-# LANGUAGE BangPatterns #-}

import Data.List(sort)
import qualified Data.Set as S
import System.Environment(getArgs)

data Point = P !Int !Int deriving (Eq,Ord)

start :: Point
start = P 1 1

redsq :: Point -> Bool
redsq (P x y) = (x+y) `mod` 4 == 2

neighs :: Point -> [Point]
neighs (P x y) =
  case (even x, even y) of
    (False,False) -> [P x (y+1), P (x+1) y, P x (y-1), P (x-1) y]
    (True, False) -> (P x (c y (x+y+1))) : opt [P (x-1) y, P (x+1) y]
    (False,True ) -> (P (c x (x+y-1)) y) : opt [P x (y-1), P x (y+1)]
  where
    opt = filter ok
    ok p = p>start || not (redsq p)
    c z m = if m `mod` 4 == 0 then z+2 else z-2

count :: S.Set Point -> S.Set Point -> [Point] -> Int -> Int -> Int -> Int -> Int
count use _    _            0 c r y =
  if check (S.toAscList use) (y==r)
    then c+1
    else c
count _   _    []           _ c _ _ = c
count use seen (p:possible) n c r y =
  let !c' = count use seen possible n c r y
      new = filter (`S.notMember` seen) $ neighs p
      !r' = if redsq p then r+1 else r
      !y' = if redsq (mirror p) then y+1 else y
      !n' = n-1
  in if r'+n' < y' 
       then c'
       else count (S.insert p use) (foldr S.insert seen new) (new++possible)
                  n' c' r' y'

class Geom g where
  translate :: Int -> Int -> g -> g
  rot :: g -> g
  mirror :: g -> g

instance Geom Point where
  translate dx dy (P x y) = P (dx+x) (dy+y)
  rot (P x y) = P (2-y) x    -- rotate around (1,1)
  mirror (P x y) = P x (-y)

instance (Geom g, Ord g) => Geom [g] where
  translate x y = map $ translate x y
  rot = sort . map rot
  mirror = sort . map mirror

normalize :: [Point] -> [Point]
normalize pol = let (P x y) = head (filter redsq pol)
                in translate (1-x) (1-y) pol

check :: [Point] -> Bool -> Bool
check pol !cm = let rotated = take 4 $ iterate rot pol
                    mirrored = if cm then map mirror rotated else []
                    alts = map normalize (tail rotated ++ mirrored)
                in all (pol<=) alts

f :: Int -> Int
f 0 = 1; f 1 = 2; f 2 = 2
f n = count S.empty S.empty [start] n 0 0 0

output :: Int -> IO ()
output n = putStrLn $ show n ++ ": " ++ show (f n)

main = do args <- getArgs
          case args of
            []  -> mapM_ output [1..]
            [n] -> output (read n)

Cobalah online!

Sievers Kristen
sumber
Sepertinya Anda memiliki representasi ubin yang lebih baik daripada saya. Maukah Anda menjelaskan cara kerjanya?
Peter Taylor
1
Saya harap tambahan saya menjawab pertanyaan Anda.
Christian Sievers
6

2, 2, 4, 10, 28, 79, 235, 720, 2254, 7146, 22927, 74137, 241461, 790838, 2603210, 8604861, 28549166, 95027832

Saya akan memasang taruhan sebelum Christian Sievers memposting jawaban untuk n = 18. Sejauh ini saya bisa menggunakan kode saat ini dan 16GB RAM. Saya sudah harus mengorbankan beberapa kecepatan untuk mengurangi penggunaan memori, dan saya harus melakukannya bahkan lebih. Saya punya beberapa ide ...

Cuplikan ini adalah SVG dari komentar pertama.

<svg xmlns="http://www.w3.org/2000/svg" width="130" height="130">
  <path style="stroke:none; fill:#f22" d="M 72,72 l -14.235,53.1259 -53.1259,-14.235 14.235,-53.1259 z" />  <!-- "Anticlockwise" square -->
  <path style="stroke:none; fill:#44f" d="M 72,72 l 53.1259,-14.235 -14.235,-53.1259 -53.1259,14.235 z" />  <!-- "Clockwise" square -->

  <path style="stroke:none; fill:#4f4" d="M 72,72 l 38.89,38.89 14.235,-53.1259 z" />  <!-- "NE" triangle -->
  <path style="stroke:none; fill:#ff4" d="M 72,72 l 38.89,38.89 -53.1259,14.235 z" />  <!-- "SW" triangle -->
  <path style="stroke:none; fill:#4ff" d="M 72,72 m -53.1259,-14.235 l 38.89,-38.89 -53.1259,-14.235 z" />  <!-- "NW" triangle -->

  <path style="stroke:#000; fill:none" d="M 72,72 m 38.89,38.89 l 14.235,-53.1259 -14.235,-53.1259 -53.1259,14.235 -53.1259,-14.235 14.235,53.1259 -14.235,53.1259 53.1259,14.235 53.1259,-14.235" />
</svg>

Kode adalah C #. Saya menjalankannya dengan .Net Core 2.2.6 di Linux.

#define SUPERLIGHT
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;

namespace Sandbox
{
    // /codegolf/187763/counting-generalized-polyominoes
    // Count polyominos on the snub square tiling.

    // We index the tiles using the following basic element, which tiles like a square:
    /*
        <?xml version="1.0" standalone="no"?>
        <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
        <svg xmlns="http://www.w3.org/2000/svg" width="130" height="130">
            <path style="stroke:none; fill:#f22" d="M 72,72 l -14.235,53.1259 -53.1259,-14.235 14.235,-53.1259 z" />  <!-- "Anticlockwise" square -->
            <path style="stroke:none; fill:#44f" d="M 72,72 l 53.1259,-14.235 -14.235,-53.1259 -53.1259,14.235 z" />  <!-- "Clockwise" square -->

            <path style="stroke:none; fill:#4f4" d="M 72,72 l 38.89,38.89 14.235,-53.1259 z" />  <!-- "NE" triangle -->
            <path style="stroke:none; fill:#ff4" d="M 72,72 l 38.89,38.89 -53.1259,14.235 z" />  <!-- "SW" triangle -->
            <path style="stroke:none; fill:#4ff" d="M 72,72 m -53.1259,-14.235 l 38.89,-38.89 -53.1259,-14.235 z" />  <!-- "NW" triangle -->
            <!-- There's a "SE" triangle, but it's unfilled -->

            <path style="stroke:#000; fill:none" d="M 72,72 m 38.89,38.89 l 14.235,-53.1259 -14.235,-53.1259 -53.1259,14.235 -53.1259,-14.235 14.235,53.1259 -14.235,53.1259 53.1259,14.235 53.1259,-14.235" />
        </svg>
    */
    // In terms of symmetries, we have rotation by 90 degrees and reflection, possibly with glide.
    // We obviously want a canonical representation.
    //   Reflection interchanges "anticlockwise" and "clockwise" squares, so we shall require at least as many anticlockwise as clockwise.
    //   Rotation anticlockwise by 90 maps NE -> NW -> SW -> SE -> NE. We rotate to get a standard necklace.
    //   Further ties must be broken lexicographically, after translating to give minimum X and Y of 0.
    class PPCG187763
    {

        internal static void Main()
        {
            SanityChecks();

            var polyominos = new HashSet<TileSet>();
            polyominos.Add(new TileSet(Enumerable.Repeat(new Tile { X = 0, Y = 0, Shape = TileShape.SE }, 1)));
            polyominos.Add(new TileSet(Enumerable.Repeat(new Tile { X = 0, Y = 0, Shape = TileShape.Anticlockwise }, 1)));
            Console.WriteLine($"1\t{polyominos.Count}");
            for (int tileCount = 2; tileCount < 60; tileCount++)
            {
                var sw = new Stopwatch();
                sw.Start();
                var nextPolyominos = new HashSet<TileSet>();
                // TODO This can be greatly optimised by tracking discarded insertion points
                foreach (var polyomino in polyominos)
                {
                    foreach (var neighbour in polyomino.SelectMany(tile => tile.Neighbours).Distinct())
                    {
                        if (!polyomino.Contains(neighbour)) nextPolyominos.Add(new TileSet(polyomino.Concat(Enumerable.Repeat(neighbour, 1))));
                    }
                }
                polyominos = nextPolyominos;
                Console.WriteLine($"{tileCount}\t{polyominos.Count}\t{sw.ElapsedMilliseconds}ms");
            }
        }

        private static void SanityChecks()
        {
            var cluster = new HashSet<Tile>();
            cluster.Add(new Tile { Shape = TileShape.Anticlockwise });
            for (int i = 0; i < 3; i++)
            {
                foreach (var tile in cluster.SelectMany(tile => tile.Neighbours).ToList()) cluster.Add(tile);
            }

            foreach (var tile in cluster)
            {
                foreach (var neighbour in tile.Neighbours)
                {
                    if (!neighbour.Neighbours.Contains(tile))
                    {
                        throw new Exception("Assertion failed: adjacency isn't symmetric");
                    }

                    if (!tile.Flip().Neighbours.Contains(neighbour.Flip()))
                    {
                        throw new Exception("Assertion failed: flip doesn't preserve adjacency");
                    }

                    if (!tile.Rot().Neighbours.Contains(neighbour.Rot()))
                    {
                        throw new Exception("Assertion failed: rot doesn't preserve adjacency");
                    }

                    if (!tile.Equals(tile.Rot().Rot().Rot().Rot()))
                    {
                        throw new Exception("Assertion failed: rot^4 should be identity");
                    }
                }
            }
        }

        struct Tile : IComparable<Tile>
        {
            public TileShape Shape { get; set; }
            public sbyte X { get; set; }
            public sbyte Y { get; set; }

            public IEnumerable<Tile> Neighbours
            {
                get
                {
                    switch (Shape)
                    {
                        case TileShape.Anticlockwise:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.SE };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.SW };
                            yield return new Tile { X = X, Y = (sbyte)(Y - 1), Shape = TileShape.NW };
                            yield return new Tile { X = (sbyte)(X - 1), Y = Y, Shape = TileShape.NE };
                            break;

                        case TileShape.Clockwise:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.SE };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.NE };
                            yield return new Tile { X = X, Y = (sbyte)(Y + 1), Shape = TileShape.SW };
                            yield return new Tile { X = (sbyte)(X + 1), Y = Y, Shape = TileShape.NW };
                            break;

                        case TileShape.NE:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.SW };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.Clockwise };
                            yield return new Tile { X = (sbyte)(X + 1), Y = Y, Shape = TileShape.Anticlockwise };
                            break;

                        case TileShape.NW:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.SE };
                            yield return new Tile { X = (sbyte)(X - 1), Y = Y, Shape = TileShape.Clockwise };
                            yield return new Tile { X = X, Y = (sbyte)(Y + 1), Shape = TileShape.Anticlockwise };
                            break;

                        case TileShape.SE:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.NW };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.Clockwise };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.Anticlockwise };
                            break;

                        case TileShape.SW:
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.NE };
                            yield return new Tile { X = X, Y = (sbyte)(Y - 1), Shape = TileShape.Clockwise };
                            yield return new Tile { X = X, Y = Y, Shape = TileShape.Anticlockwise };
                            break;

                        default:
                            throw new NotSupportedException();
                    }
                }
            }

            public Tile Flip()
            {
                // We'll flip vertically.
                switch (Shape)
                {
                    case TileShape.Anticlockwise:
                        return new Tile { Shape = TileShape.Clockwise, X = X, Y = (sbyte)-Y };
                    case TileShape.Clockwise:
                        return new Tile { Shape = TileShape.Anticlockwise, X = (sbyte)(X + 1), Y = (sbyte)-Y };
                    case TileShape.NE: // G
                        return new Tile { Shape = TileShape.SE, X = (sbyte)(X + 1), Y = (sbyte)-Y };
                    case TileShape.NW: // Cy
                        return new Tile { Shape = TileShape.SW, X = X, Y = (sbyte)-Y };
                    case TileShape.SE: // W
                        return new Tile { Shape = TileShape.NE, X = X, Y = (sbyte)-Y };
                    case TileShape.SW: // Y
                        return new Tile { Shape = TileShape.NW, X = (sbyte)(X + 1), Y = (sbyte)-Y };
                    default:
                        throw new NotSupportedException();
                }
            }

            public Tile Rot()
            {
                // Anti-clockwise rotation: (x, y) = (-y, x)
                // But there will be offsets to account for the positions within the cell
                switch (Shape)
                {
                    case TileShape.Anticlockwise:
                        return new Tile { Shape = TileShape.Anticlockwise, X = (sbyte)-Y, Y = X };
                    case TileShape.Clockwise:
                        return new Tile { Shape = TileShape.Clockwise, X = (sbyte)(-Y - 1), Y = X };
                    case TileShape.NE:
                        return new Tile { Shape = TileShape.NW, X = (sbyte)-Y, Y = X };
                    case TileShape.NW:
                        return new Tile { Shape = TileShape.SW, X = (sbyte)(-Y - 1), Y = X };
                    case TileShape.SE:
                        return new Tile { Shape = TileShape.NE, X = (sbyte)(-Y - 1), Y = X };
                    case TileShape.SW:
                        return new Tile { Shape = TileShape.SE, X = (sbyte)-Y, Y = X };
                    default:
                        throw new NotSupportedException();
                }
            }

            public override int GetHashCode() => (X << 17) + (Y << 3) + (int)Shape;

            public bool Equals(Tile tile) => X == tile.X && Y == tile.Y && Shape == tile.Shape;

            public override bool Equals(object obj) => obj is Tile tile && Equals(tile);

            public int CompareTo(Tile other)
            {
                if (X != other.X) return X.CompareTo(other.X);
                if (Y != other.Y) return Y.CompareTo(other.Y);
                return Shape.CompareTo(other.Shape);
            }

            public override string ToString() => $"({X},{Y},{Shape})";
        }

        enum TileShape : byte
        {
            Anticlockwise,
            Clockwise,
            NE,
            SW,
            NW,
            SE
        }

        class TileSet : IReadOnlyCollection<Tile>
        {
            public TileSet(IEnumerable<Tile> tiles)
            {
                // Canonicalise
                var ordered = _Canonicalise(new HashSet<Tile>(tiles));
                int h = 1;
                foreach (var tile in ordered) h = h * 37 + tile.GetHashCode();
                _HashCode = h;

                #if SUPERLIGHT

                // Since we normalise to have minimum X and Y of 0, we can use unsigned coordinates.
                // And since we're looking at connected graphs of on the order of 20 items, 6 bits per coordinate is plenty.
                _Items = ordered.Select(tile => (short)((tile.X << 9) + (tile.Y << 3) + (int)tile.Shape)).ToArray();

                #else

                _Items = new HashSet<Tile>(ordered);

                #endif
            }

            private IReadOnlyList<Tile> _Canonicalise(ISet<Tile> tiles)
            {
                int ac = tiles.Count(tile => tile.Shape == TileShape.Anticlockwise);
                int c = tiles.Count(tile => tile.Shape == TileShape.Clockwise);

                if (ac < c) return _CanonicaliseRot(tiles);
                if (ac > c) return _CanonicaliseRot(tiles.Select(tile => tile.Flip()));

                return _Min(_CanonicaliseRot(tiles), _CanonicaliseRot(tiles.Select(tile => tile.Flip())));
            }

            private IReadOnlyList<Tile> _Min(IReadOnlyList<Tile> tiles1, IReadOnlyList<Tile> tiles2)
            {
                for (int i = 0; i < tiles1.Count; i++)
                {
                    int cmp = tiles1[i].CompareTo(tiles2[i]);
                    if (cmp < 0) return tiles1;
                    if (cmp > 0) return tiles2;
                }

                return tiles1;
            }

            private IReadOnlyList<Tile> _CanonicaliseRot(IEnumerable<Tile> tiles)
            {
                //   Rotation anticlockwise by 90 maps NE -> NW -> SW -> SE -> NE. We rotate to get one of these necklaces (in rank order, not exact values):
                //     Necklaces:
                //     SE NE NW SW
                //     0  0  0  0    ** Four positions to consider
                //     1  0  0  0
                //     1  0  1  0    ** Two positions to consider
                //     1  1  0  0
                //     1  1  1  0
                //     2  0  0  1
                //     2  0  1  0
                //     2  0  1  1
                //     2  1  0  0
                //     2  1  0  1
                //     2  1  1  0
                //     2  1  2  0
                //     2  2  0  1
                //     2  2  1  0
                //     3  0  1  2
                //     3  0  2  1
                //     3  1  0  2
                //     3  1  2  0
                //     3  2  0  1
                //     3  2  1  0

                int se = tiles.Count(tile => tile.Shape == TileShape.SE);
                int ne = tiles.Count(tile => tile.Shape == TileShape.NE);
                int nw = tiles.Count(tile => tile.Shape == TileShape.NW);
                int sw = tiles.Count(tile => tile.Shape == TileShape.SW);
                var sorted = new int[] { se, ne, nw, sw }.Distinct().OrderBy(x => x);
                var index = 1000 * sorted.IndexOf(se) + 100 * sorted.IndexOf(ne) + 10 * sorted.IndexOf(nw) + sorted.IndexOf(sw);
                switch (index)
                {
                    case 0:
                        // All four positions need to be considered
                        var best = _Translate(tiles);
                        best = _Min(best, _Translate(tiles.Select(tile => tile.Rot())));
                        best = _Min(best, _Translate(tiles.Select(tile => tile.Rot().Rot())));
                        best = _Min(best, _Translate(tiles.Select(tile => tile.Rot().Rot().Rot())));
                        return best;

                    case 101:
                        // Two options need to be considered;
                        return _Min(_Translate(tiles.Select(tile => tile.Rot())), _Translate(tiles.Select(tile => tile.Rot().Rot().Rot())));

                    case 1010:
                        // Two options need to be considered;
                        return _Min(_Translate(tiles), _Translate(tiles.Select(tile => tile.Rot().Rot())));

                    case 1000:
                    case 1100:
                    case 1110:
                    case 2001:
                    case 2010:
                    case 2011:
                    case 2100:
                    case 2101:
                    case 2110:
                    case 2120:
                    case 2201:
                    case 2210:
                    case 3012:
                    case 3021:
                    case 3102:
                    case 3120:
                    case 3201:
                    case 3210:
                        // Already in the canonical rotation.
                        return _Translate(tiles);

                    case    1:
                    case 1001:
                    case 1101:
                    case   12:
                    case  102:
                    case  112:
                    case 1002:
                    case 1012:
                    case 1102:
                    case 1202:
                    case 2012:
                    case 2102:
                    case  123:
                    case  213:
                    case 1023:
                    case 1203:
                    case 2013:
                    case 2103:
                        // Needs one rotation.
                        return _Translate(tiles.Select(tile => tile.Rot()));

                    case   10:
                    case   11:
                    case 1011:
                    case  120:
                    case 1020:
                    case 1120:
                    case   21:
                    case  121:
                    case 1021:
                    case 2021:
                    case  122:
                    case 1022:
                    case 1230:
                    case 2130:
                    case  231:
                    case 2031:
                    case  132:
                    case 1032:
                        // Needs two rotations.
                        return _Translate(tiles.Select(tile => tile.Rot().Rot()));

                    case  100:
                    case  110:
                    case  111:
                    case 1200:
                    case  201:
                    case 1201:
                    case  210:
                    case 1210:
                    case  211:
                    case  212:
                    case 1220:
                    case  221:
                    case 2301:
                    case 1302:
                    case 2310:
                    case  312:
                    case 1320:
                    case  321:
                        // Needs three rotations.
                        return _Translate(tiles.Select(tile => tile.Rot().Rot().Rot()));

                    default:
                        throw new NotSupportedException("Case analysis failed");
                }
            }

            private IReadOnlyList<Tile> _Translate(IEnumerable<Tile> tiles)
            {
                int minX = tiles.Min(tile => tile.X);
                int minY = tiles.Min(tile => tile.Y);
                return tiles.
                    Select(tile => new Tile { Shape = tile.Shape, X = (sbyte)(tile.X - minX), Y = (sbyte)(tile.Y - minY) }).
                    OrderBy(tile => tile).
                    ToList();
            }

            #if SUPERLIGHT

            private readonly short[] _Items;

            public int Count => _Items.Length;

            public IEnumerator<Tile> GetEnumerator()
            {
                foreach (var encoded in _Items)
                {
                    yield return new Tile { X = (sbyte)((encoded >> 9) & 0x3f), Y = (sbyte)((encoded >> 3) & 0x3f), Shape = (TileShape)(encoded & 0x7) };
                }
            }

            #else

            private readonly ISet<Tile> _Items;

            public int Count => _Items.Count;

            public IEnumerator<Tile> GetEnumerator() => _Items.GetEnumerator();

            public bool Contains(Tile tile) => _Items.Contains(tile);

            #endif

            IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();

            private readonly int _HashCode;
            public override int GetHashCode() => _HashCode;

            public bool Equals(TileSet tileset) => tileset != null && tileset.Count == Count && tileset._HashCode == _HashCode && _Items.SequenceEqual(tileset._Items);

            public override bool Equals(object obj) => obj is TileSet tileset && Equals(tileset);
        }
    }

    static class Extensions
    {
        internal static int IndexOf<T>(this IEnumerable<T> elts, T elt)
            where T : IEquatable<T>
        {
            int idx = 0;
            foreach (var item in elts)
            {
                if (item.Equals(elt)) return idx;
                idx++;
            }
            return -1;
        }
    }
}
Peter Taylor
sumber