Buat Benua Bit

11

Bayangkan kita memiliki matriks bit (yang mengandung setidaknya satu 1):

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0

Kami ingin mengatur beberapa bit dalam matriks ini sehingga membentuk gumpalan berdekatan 1, di mana setiap bit 1terhubung secara langsung atau tidak langsung satu sama lain 1melalui gerakan ortogonal:

0 1 1 1 1 1 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 1 1 0 1 1 1 1 0 1 0
1 1 0 0 1 0 0 1 1 1 1
0 0 0 1 1 1 1 0 0 1 0

(Anda dapat melihat ini lebih jelas dengan menelusuri 1dengan fitur "temukan" di browser Anda.)

Namun, kami juga ingin meminimalkan jumlah bit yang kami atur.

Tugas

Diberikan matriks (atau array array) bit atau boolean, kembalikan jumlah minimum bit yang perlu diatur untuk membuat benua bersebelahan dari 1s. Seharusnya dimungkinkan untuk berpindah dari satu set bit ke dalam matriks ke yang lain dengan hanya melakukan perjalanan dalam arah ortogonal ke bit set lainnya.

Ini adalah , sehingga pengiriman terpendek yang valid (diukur dalam byte) menang.

Uji Kasus

0 1 0 1 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 1 0 0 1 0
=> 6

1 0 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 1 1 0
1 0 0 0 0 0 1 0 0
=> 4

0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1 0
0 0 1 1 1 1 1 1 0
1 1 0 0 1 1 0 0 0
0 0 1 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0
1 1 1 0 0 1 1 1 0
1 1 1 0 1 1 0 1 1
0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0
0 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0 1
0 1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 0 1
=> 8

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
=> 0
Buah Esolanging
sumber
1
Ini perlu dijelaskan lebih lanjut. Apa yang dimaksud dengan "gumpalan yang berdekatan" dalam sebuah matriks?
NoOneIsHere
11
Karena masalah ini dikenal sebagai NP-hard, itu bukan masalah yang baik untuk algoritma tercepat .
Peter Taylor
1
@ Peter Taylor dan esolangingfruit NP-Hardness
FantaC
1
Mengingat komentar Peter Taylor dan HyperNeutrino, dan fakta bahwa pertanyaannya saat ini tidak memiliki jawaban, saya mengubah metode penilaian menjadi golf kode .
Buah Esolanging
1
Apa yang harus kita lakukan jika tidak ada 1dalam matriks?
Colera Su

Jawaban:

1

C (gcc), 308 306 byte

Fungsi fmenerima (height, width, flattened array, pointer to ans), dan mengembalikan jawaban dengan pointer.

Jika tidak ada 1dalam matriks, itu akan kembali 0.

#define v A[i]
N,M,K,R,C,T,i,*A;s(x,y){i=x*M+y;if(!(x<0|y<0|x>=N|y>=M|v^1))v=2,s(x,y+1),s(x,y-1),s(x+1,y),s(x-1,y);}g(i){if(C<R){if(i^K){g(i+1);if(!v)C+=v=1,g(i+1),v=0,C--;}else{T=1;for(i=0;i<K&&!v;i++);s(i/M,i%M);for(i=0;i<K;i++)T&=v^1,v=!!v;if(T)R=C;}}}f(n,m,a,b)int*a,*b;{K=R=(N=n)*(M=m),A=a;g(0);*b=R;}

Cobalah online!

Tidak Disatukan:

N,M,R,C,T,i,*A; // height, width, result, recursion depth

s(x,y)
{ // depth first search: replace all 1 in the same connected component with 2
    i=x*M+y;
    if(!(x<0|y<0|x>=N|y>=M|A[i]^1)) { // check if out of boundary
        A[i]=2;
        s(x, y+1),s(x, y-1),s(x+1, y),s(x-1, y);
    }
}

g(i)
{ // enumerate all posible solutions
    if(C<R) {
        if(i!=N*M) {
            g(i+1);      // nothing change for this entry
            if (!A[i]) { // set the entry to 1
                C++, A[i]=1;
                g(i+1);
                C--, A[i]=0;
            }
        }
        else {
            T=1;
            for (i=0; i<N*M && !A[i]; i++); // find first non-zero entry
            s(i/M, i%M);     // replace the connected component
            for (i=0; i<N*M; i++) {
                T&=A[i]!=1;   // check if no other components
                A[i]=!!A[i]; // change 2s back to 1
            }
            if (T) R=C;      // update answer
        }
    }
}

f(n,m,a,b)int*a,*b;{
    R=(N=n)*(M=m), A=a;
    g(0);
    *b=R;
}
Colera Su
sumber
0

Python 2 , 611 byte

Program lengkap yang mengambil daftar daftar melalui input pengguna. Fungsi Idan dmenghitung jumlah pulau dalam array. Perulangan for pada bagian akhir menyebutkan semua kemungkinan di mana Anda dapat mengubah 0s ke 1s lalu jika ada satu pulau tersisa, jumlah 1s ditambahkan ke daftar C. Minimum dari daftar itu adalah jumlah minimum bit bit yang diperlukan untuk menghubungkan setiap pulau. Ini adalah algoritma yang sangat lambat sehingga tidak menjalankan test case yang diberikan di bawah 60an (saya tidak mencoba lagi) tetapi saya mencoba beberapa test case yang lebih kecil (~ 5x5) dan sepertinya berfungsi dengan benar. Saya mendapatkan algoritma penghitungan pulau dari halaman ini .

from itertools import*
def d(g,i,j,v):
 v[i][j],R,C=1,[-1,1,0,0],[0,0,-1,1]
 for k in range(4):
	if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
	 if v[i+R[k]][j+C[k]]<1and g[i+R[k]][j+C[k]]:v=d(g,i+R[k],j+C[k],v)
 return v
def I(g):
 w=len(g[0])
 v,c=[w*[0]for r in g],0
 for i in range(len(g)*w):
	if v[i/w][i%w]<1and g[i/w][i%w]>0:v=d(g,i/w,i%w,v);c+=1
 return c           
g=input()
C=[]
for p in [list(t)for t in product([0,1],repeat=sum(r.count(0)for r in g))]:
 h,G,x=0,[r[:]for r in g],len(g[0])
 for i in range(x*len(G)):
	if G[i/x][i%x]<1:h+=p[0];G[i/x][i%x]=p[0];del p[0]
 if I(G)<2:
	C.append(h)
print min(C)

Cobalah online!

Versi pregolf sebelum saya mengoptimalkan beberapa hal:

from itertools import*
def d(g,i,j,v):
    v[i][j]=1
    R=[-1,1,0,0]
    C=[0,0,-1,1]
    for k in range(4):
        if len(g)>i+R[k]>=0<=j+C[k]<len(g[0]):
            if v[i+R[k]][j+C[k]]<1:
                if g[i+R[k]][j+C[k]]:
                    v=d(g,i+R[k],j+C[k],v)
    return v
def I(g):
    w=len(g[0])
    v=[[0]*w for r in g]
    c=0
    for i in range(len(g)):
        for j in range(w):
            if v[i][j]<1and g[i][j]>0:
                v=d(g,i,j,v)
                c+=1
    return c           
g=input()
z=sum(r.count(0)for r in g)
f=[list(t)for t in product('01',repeat=z)]
C=[]
for p in f:
    h=0
    G=[r[:]for r in g]
    x=len(G[0])
    for i in range(x*len(G)):
        exec('h+=int(p[0]);G[i/x][i%x]=int(p[0]);del p[0]'*(G[i/x][i%x]<1))
    if I(G)<2:
        C.append(h)
print min(C)
dylnan
sumber