Puzzle Piet (Mondrian)

20

Untuk informasi lebih lanjut, tonton video ini , dan buka A276523 untuk urutan yang terkait.

Puzzle Mondrian (untuk bilangan bulat n) adalah sebagai berikut:

Pasangkan persegi panjang yang tidak kongruen ke dalam n*nkotak persegi. Apa perbedaan terkecil yang mungkin antara persegi panjang terbesar dan terkecil?

Sebab 6, perbedaan optimal untuk M(6)adalah 5, dan dapat ditunjukkan seperti:

 ___________
| |S|_______|
| | |   L   |
| |_|_______|
| |     |   |
| |_____|___|
|_|_________| (fig. I)

Kotak terbesar (L) memiliki luas 2 * 4 = 8, dan kotak terkecil (S) memiliki luas 1 * 3 = 3. Karena itu, perbedaannya adalah 8 - 3 = 5.

Perlu diingat bahwa saat ini, tidak ada solusi optimal untuk n > 44telah ditemukan.

Tugas Anda adalah membuat program yang menghasilkan kisi Mondrian yang berisi solusi (tidak optimal), diberi bilangan bulat n.

Anda akan diuji pada angka dari 100 hingga 150. Skor Anda untuk setiap tes akan menjadi perbedaan antara persegi panjang terbesar dan terkecil. Skor total Anda adalah jumlah skor Anda untuk semua tes dari 100 hingga 150.

Anda harus menyajikan output Anda seperti ini:

{number}
{grid}

Di mana numberskor (perbedaan antara terbesar dan terkecil), dan gridadalah:

  • String multi-baris, atau
  • Daftar dua dimensi.

Grid HARUS dengan jelas menunjukkan di mana persegi panjang dimulai dan berakhir.

Aturan:

  • Program Anda harus sesuai dengan jawaban Anda.
  • Program Anda harus menampilkan nilai untuk angka antara 100 dan 150 dalam 1 jam pada laptop modern.
  • Program Anda harus menghasilkan solusi yang sama untuk integer nsetiap kali program dijalankan.
  • Anda harus memberikan tautan ke output dari semua 51 solusi (menggunakan Pastebin, Github Gist ... apa saja, sungguh).
  • Anda harus memiliki setidaknya dua persegi panjang di kotak persegi untuk solusi Anda.
clismique
sumber
1
OEIS A276523 . Perhatikan bahwa batas atas yang tercantum di sana sangat mudah ditingkatkan.
Peter Taylor
Ha. Saya menonton video yang sama seminggu yang lalu, dan pikiran pertama saya mencoba membuat program untuk menyelesaikannya. Saya akhirnya benar-benar lupa tentang itu.
Carcigenicate
4
Untuk menjelaskannya, kita perlu jawaban Piet. Mungkin hadiah untuk itu ...
NoOneIsHere

Jawaban:

11

Piet, 9625

(Akhirnya berhasil!)

Orang-orang menuntutnya, jadi ini dia. Ini adalah solusi yang sangat naif (pada dasarnya sama dengan batas atas yang longgar pada halaman OEIS): solusi ini membagi setiap kotak menjadi hanya dua persegi panjang.

Intisari ini berisi detail dalam dua file:

  • Output program (menggunakan npiet v1.3) untuk semua input yang diperlukan. Perhatikan bahwa saya hanya menangkap stdout, jadi itu ?adalah input prompt, segera diikuti oleh skor output, kemudian grid.
  • Sumber "pseudo-assembly" yang saya gunakan untuk merencanakan program.

Solusi Piet, ukuran kodel 10

Penjelasan

Program ini mengambil satu nomor Nsebagai input. Jika angkanya ganjil, skornya adalah angkanya; jika genap, angkanya dua kali angka.

Setelah mengeluarkan skor, sisa sisi kiri program dihabiskan untuk mengisi tumpukan dengan lima lot informasi berikut:

  • Lebar kisi (yaitu N)
  • Sejumlah garis untuk dicetak
  • Karakter yang akan dicetak melintasi kisi (baik _spasi)
  • Karakter yang akan dicetak di setiap tepi kisi (baik spasi atau |)

Sisi kanan program mengambil setiap set empat nilai dan mencetak bagian dari grid.

Tim Pederick
sumber
Anda mendapatkan hadiah pula!
NoOneIsHere
Solusi harus valid untuk diposting.
mbomb007
@ mbomb007 Ok, saya tidak menyadarinya. Saya harap ini selesai dalam 7 hari.
NoOneIsHere
6

C 6108

Ini menggunakan versi minimal solusi rekursif (benar-benar iteratif). Alih-alih membagi persegi menjadi dua persegi panjang di mana seseorang sedikit lebih besar dari setengah luasnya, ia membaginya menjadi N persegi panjang. Jadi persegi panjang pertama sedikit lebih besar dari 1/Nluas total. Kemudian mengambil sisanya, program memecah persegi panjang sedikit lebih besar 1/(N-1)dari sisanya dan seterusnya sampai hanya mengambil sisanya sebagai persegi panjang terakhir. Segi empat terpotong dari sisanya dalam spiral searah jarum jam, jadi pertama di atas, lalu di kanan, dll.

Karena ini adalah metode yang sangat langsung alih-alih pencarian ruang yang luas, ini berjalan cepat - membutuhkan waktu sekitar 25 detik (pada Raspberry Pi) untuk melihat 74 solusi masing-masing untuk set masalah yang diberikan.

Maksud saya adalah menggunakan hasil ini untuk menginformasikan algoritma pencarian dengan lebih baik untuk pendekatan yang lebih canggih.

Outputnya memberikan skor dan gambar (ascii) dan koordinat untuk simpul persegi panjang. Verteks berada dalam urutan searah jarum jam, mulai dari sudut kiri atas dari persegi panjang yang bersangkutan.

Dikembangkan menggunakan gcc 4.9.2-10.

Hasil di https://github.com/JaySpencerAnderson/mondrian

Kode:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct {
    int y, x, height, width;
} rectangle;
#define min(x,y) (((x)<(y))?(x):(y))
#define max(x,y) (((x)>(y))?(x):(y))
#ifndef TRUE
#define TRUE -1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define MAXCOUNT 75

void initstack(rectangle *s, int n){
    int i;
    for(i=0;i<n;i++){
        s[i].y=s[i].x=s[i].height=s[i].width=0;
    }
}
int valid(rectangle *s,int n){
    int i,j;
    for(i=0;i<n-1;i++){
        for(j=i+1;j<n;j++){
            if(min(s[i].height,s[i].width) == min(s[j].height,s[j].width) && max(s[i].height,s[i].width) == max(s[j].height,s[j].width)){

                initstack(s, n);
                return FALSE;
            }
        }
    }
    return TRUE;
}
int horizontal(rectangle s, int y, int x){
    if(s.y == y && x >= s.x && x < s.x+s.width){
        return TRUE;
    }
    else if(s.y+s.height == y && x >= s.x && x < s.x+s.width){
        return TRUE;
    }
    return FALSE;
}
int vertical(rectangle s, int y, int x){
    if(s.x == x && y > s.y && y <= s.y+s.height){
        return TRUE;
    }
    else if(s.x+s.width == x && y > s.y && y <= s.y+s.height){
        return TRUE;
    }
    return FALSE;
}
void graph(rectangle *s, int n, int side){
    unsigned int row,col,i;
    unsigned int line;
    printf("{\n");
/* vertical lines take precedence since "1" cell is 1 char high and 2 char wide */
    for(row=0;row<=side;row++){
        for(col=0;col<=side;col++){
            line=0;
/* Possible values are "  " (0), "__" (1), "| " (2) or "|_" (3). */
            for(i=0;i<n;i++){
                if(horizontal(s[i],row,col)){
                    line|=1;
                }
                if(vertical(s[i],row,col)){
                    line|=2;
                }
            }

            switch(line){
            case 0: printf("  ");   break;
            case 1: printf("__");   break;
            case 2: printf("| ");   break;
            case 3: printf("|_");   break;
            default: printf("##");  break;
            }
        }
        printf("\n");
    }
    printf("}\n");
}
unsigned int score(rectangle *s, int n){
    int i;
    unsigned int smallest,biggest;

    smallest=biggest=s[0].width*s[0].height;

    for(i=0;i<n;i++){
        smallest=min(smallest,s[i].width*s[i].height);
        biggest=max(biggest,s[i].width*s[i].height);
    }
    return biggest-smallest;
}
void report(rectangle *s, int n, int side){
    int i;

    printf("{%d}\n",score(s,n));
    graph(s, n, side);
    printf("{\n");
    for(i=0;i<n;i++){
        printf("[%d,%d] ",s[i].x,s[i].y);
        printf("[%d,%d] ",s[i].x+s[i].width,s[i].y);
        printf("[%d,%d] ",s[i].x+s[i].width,s[i].y+s[i].height);
        printf("[%d,%d]\n",s[i].x,s[i].y+s[i].height);
    }
    printf("\n}\n");
}
void locateandrotate(rectangle *stack, int n){
    unsigned int scratch,i;
    for(i=1;i<n;i++){
        /* Odd rectangles are on their side */
        if(i&1){
            scratch=stack[i].width;
            stack[i].width=stack[i].height;
            stack[i].height=scratch;
        }
        switch(i%4){
        case 0:
            stack[i].x=stack[i-1].x+stack[i-1].width;
            stack[i].y=stack[i-1].y;
            break;
        case 1:
            stack[i].x=stack[i-1].x+stack[i-1].width-stack[i].width;
            stack[i].y=stack[i-1].y+stack[i-1].height;
            break;
        case 2:
            stack[i].x=stack[i-1].x-stack[i].width;
            stack[i].y=stack[i-1].y+stack[i-1].height-stack[i].height;
            break;
        case 3:
            stack[i].x=stack[i-1].x;
            stack[i].y=stack[i-1].y-stack[i].height;
            break;
        default:
            printf("Woops!\n");
        }
    }
}
/* These are the height and width of the remaining area to be filled. */
void door(rectangle *stack, unsigned int height, unsigned int width, unsigned int n, unsigned int totaln){
    unsigned int thisheight, thiswidth;
    int i;

    for(i=0;i<totaln;i++){
/* Not yet used */
        if(stack[i].width == 0){
            stack[i].width=width;
            if(i+1 == totaln){
                stack[i].height=height;
            }
            else {
/* Sometimes yields congruent rectangles, as with 16x16, 8 rectangles */
                if(totaln&1 || height%n){
                    int j;
                    stack[i].height=height-(((n-1)*height)/n);
                }
                else {
                    stack[i].height=height-((((n-1)*height)-1)/n);
                }
                /* Exchange height and width to rotate */
                door(stack,width,height-stack[i].height,n-1,totaln);
            }
            return;
        }
    }
}
void usage(char *argv[],int side){
    printf("Usage: %s -s <side-length>\n",argv[0]);
    printf("Purpose: Calculate N non-congruent rectangles arranged to exactly fill a square with the specified side length.\n");
    printf("Defaults: %s -s %d\n",argv[0],side);
    exit(0);

}
int main(int argc, char *argv[]){
    int side=16;
    int n,bestscore,bestn=2;
    int status;

    while((status=getopt(argc,argv,"s:h")) >= 0){
        switch(status){
        case 's':
            sscanf(optarg,"%d",&side);
            break;
        case 'h':
        default:
            usage(argv,side);
        }
    }

    bestscore=side+side;

    rectangle stack[MAXCOUNT],best[MAXCOUNT];
    for(n=2;n<=MAXCOUNT;n++){
        initstack(stack,MAXCOUNT);
        door(stack, side, side, n, n);
        locateandrotate(stack, n);
        if(valid(stack,n)){
            if(score(stack,n) < bestscore){
                bestn=n;
                initstack(best,MAXCOUNT);
                door(best, side, side, n, n);
                locateandrotate(best, n);

                bestscore=score(best,n);
            }
        }
    }
    report(best,bestn,side);
}
Jay Anderson
sumber
1
Ummm ... bisakah Anda memberikan skor akhir di header? Terima kasih. Solusi yang bagus, meskipun - tidak mengharapkan solusi (karena tidak ada yang menjawab selama beberapa hari).
clismique
1

C - 2982

Program ini mengimplementasikan pencarian melalui set hasil yang luas. Bagian penting dari membuat pencarian ini praktis adalah gagal lebih awal dan / atau tidak turun jalur yang buruk.

Ini menghasilkan seperangkat persegi panjang untuk dipertimbangkan untuk solusi. Himpunan persegi panjang yang dihasilkan menghindari mereka dengan dimensi yang tidak akan berguna. Misalnya, jika program mencoba menemukan solusi untuk 128x128 persegi, dibagi menjadi 8 persegi panjang, itu akan menghasilkan persegi panjang yaitu 128x16. Itu tidak akan menghasilkan yang satu adalah 120x17 karena tidak ada prospek menghasilkan persegi panjang yang lebar 8 untuk mengisi celah di akhir 120.

Strategi awal untuk menempatkan persegi panjang adalah menempatkannya di bagian dalam perimeter persegi (fungsi buildedge). Dengan cara itu, algoritma mendapatkan umpan balik yang cukup cepat di setiap sudut, apakah ada masalah dengan urutan yang dipilih. Sambil menempatkan persegi panjang, logika terus mengawasi untuk melihat apakah ada celah ruang yang terlalu sempit untuk persegi panjang. Setelah perimeter berhasil diisi, strategi berubah menjadi mencoba mencocokkan ruang yang tersisa dengan persegi panjang yang tersisa (fungsi pertandingan).

Satu hal lain yang mungkin menarik adalah bahwa ini mengimplementasikan transaksi dengan rollback untuk tumpukan persegi panjang.

Program ini tidak mencoba menemukan yang paling cocok. Itu diberikan anggaran (64) dan berhenti ketika menemukan solusi pertama. Jika tidak pernah menemukan solusi, kami menambah anggaran (sebesar 16) dan mencoba lagi. Waktu yang diperlukan (pada laptop Dell dengan prosesor I7) berkisar dari jauh di bawah satu menit hingga 48 menit selama 150 pada satu sisi (149 pada satu sisi membutuhkan waktu kurang dari 2 menit). Semua 51 solusi menggunakan 11 persegi panjang. Skor dari 51 solusi berkisar 41-78. Alasan saya menggunakan 11 persegi panjang adalah bahwa skor lebih rendah daripada dengan lebih sedikit persegi panjang dan sepertinya 12 persegi panjang akan membutuhkan lebih banyak daripada waktu yang diberikan.

Solusi dan kode dapat ditemukan di https://github.com/JaySpencerAnderson/mondrian . Mereka adalah dua file my4 *.

BTW, jika Anda mengkompilasi ini ke "my4" dan menjalankannya sebagai berikut: "./my4 -h", itu akan memberi Anda penggunaan. Jika Anda ingin melihatnya bekerja, coba sesuatu seperti "./my4 -l 50 -n 8". Jika Anda mengubah yang "# jika 0" menjadi "# jika 1" itu akan membuat ruang yang tersisa di layar. Jika Anda ingin mengubah ini untuk merender persegi panjang, cari satu tempat di mana kode mengeksekusi "grafik (spasi, samping)" dan ubah itu menjadi "grafik (panggil, sisi)" sebagai gantinya. Saya juga menyarankan mengubah anggaran awal dari 64 menjadi 32 jika Anda ingin bermain-main dengan solusi untuk kotak yang sekitar 50 lebar. Solusi untuk kotak yang lebih kecil akan memiliki skor yang lebih baik dengan anggaran yang lebih kecil.

Program di bawah ini fungsional. Periksa github untuk kode lengkap (dengan penggunaan, komentar, dll).

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct {
    int y, x, height, width, created, deleted;
} rectangle;
#define NOTYET -1
#define TOPEDGE 1
#define RIGHTEDGE 2
#define BOTTOMEDGE 4
#define LEFTEDGE 8
#define CENTER 16
#define nextEdge(e) (e<<=1)
#define min(x,y) (((x)<(y))?(x):(y))
#define max(x,y) (((x)>(y))?(x):(y))
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define MAXFACTORS 1000
#define EOL printf("\n")
#define isCurrent(r) (r.created != NOTYET && r.deleted == NOTYET)
#define deleteTxn(r,t) (r.deleted=t)
int area(rectangle r){
    return r.width*r.height;
}
void pop(rectangle *s){
    unsigned int k=0;
    while(s[k].width){
        k++;
    }
    s[k-1].width=s[k-1].height=0;
}
void rpush(rectangle *s, rectangle x){
    unsigned int k=0;
    while(s[k].width){
        k++;
    }
    x.deleted=NOTYET;
    s[k++]=x;
    s[k].width=s[k].height=0;

    return;
}
void dumprectangle(rectangle r){
    printf("%dX%d@[%d,%d] (%d,%d)\t",r.width, r.height, r.x, r.y, r.created, r.deleted);
}
void dumpstack(rectangle *s){
    unsigned int k=0;
    while(s[k].width){
        dumprectangle(s[k]);
        k++;
    }
}
rectangle initrectangle(int width, int height){
    rectangle r;
    r.x=r.y=0;
    r.width=width;
    r.height=height;
    r.created=0;
    r.deleted=NOTYET;
    return r;
}
void initstack(rectangle *s, int n){
    int i;
    for(i=0;i<n;i++){
        s[i].y=s[i].x=s[i].height=s[i].width=0;
    }
}
int bitcount(int x){
    int count=0;
    while(x){
        if(x&1){
            count++;
        }
        x>>=1;
    }
    return count;
}
int congruent(rectangle a, rectangle b){
    return min(a.height,a.width) == min(b.height,b.width) && max(a.height,a.width) == max(b.height,b.width);
}
void report(rectangle *s, int side){
    int i;
    unsigned int smallest,biggest,area=0;

    smallest=side*side;
    biggest=0;

    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            smallest=min(smallest,s[i].width*s[i].height);
            biggest=max(biggest,s[i].width*s[i].height);
        }
    }
    printf("{%d}\n",biggest-smallest);
    printf("{\nDimensions\tLocation\n");
    for(i=0;s[i].width;i++){
        printf("%dx%d\t\t[%d,%d]\n",
            s[i].width,         s[i].height,
            s[i].x,             s[i].y);
    }
    printf("}\n");
}
unsigned int sumstack(rectangle *s){
    unsigned int sum=0;
    int i;
    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            sum+=s[i].width*s[i].height;
            s++;
        }
    }
    return sum;
}
unsigned int minstack(rectangle *s){
    unsigned int area=400000;
    int i;

    for(i=0;s[i].width;i++){
        if(isCurrent(s[i])){
            area=min(area,s[i].width*s[i].height);
        }
    }
    return area;
}
void rollback(rectangle *r, int txn){
    int i;

    if(txn != NOTYET){
        for(i=0;r[i].width;i++){
            if(r[i].created == txn){
                r[i].created=r[i].deleted=NOTYET;
                r[i].x=r[i].width=r[i].y=r[i].height=0;
            }
            else if(r[i].deleted == txn){
                r[i].deleted=NOTYET;
            }
        }
    }
}
int overlap(rectangle a, rectangle b){
    if((a.x < b.x+b.width && a.x+a.width > b.x) && (b.y < a.y+a.height && b.y+b.height > a.y)){
        return TRUE;
    }
    return FALSE;
}
int stackoverlap(rectangle *callstack, rectangle next){
    int i,j;
    for(i=0;callstack[i].width;i++){
        if(overlap(callstack[i], next)){
            return TRUE;
        }
    }
    return FALSE;
}
rectangle rotate(rectangle a){
    int x=a.width;
    a.width=a.height;
    a.height=x;
    return a;
}
int buildedge(rectangle *stack, rectangle *callstack,int side, rectangle *space){
    int i,j,edge,goal,nextgoal,x,y,d,mindim,minarea,result=FALSE,spacetxn,stacktxn;
    mindim=side;
    minarea=side*side;
    for(i=0;stack[i].width;i++){
        mindim=min(mindim,min(stack[i].width,stack[i].height));
        minarea=min(minarea,area(stack[i]));
    }
    x=y=0;
    edge=TOPEDGE;
    i=0;
    while(edge == TOPEDGE && callstack[i].width != 0){
        if(callstack[i].x == x && callstack[i].y == y){
            x+=callstack[i].width;
            if(x == side){
                nextEdge(edge);
                y=0;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == RIGHTEDGE && callstack[i].width != 0){
        if(callstack[i].x+callstack[i].width == x && callstack[i].y == y){
            y+=callstack[i].height;
            if(y == side){
                nextEdge(edge);
                x=side;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == BOTTOMEDGE && callstack[i].width != 0){
        if(callstack[i].x+callstack[i].width == x && callstack[i].y+callstack[i].height == y){
            x-=callstack[i].width;
            if(x == 0){
                nextEdge(edge);
                y=side;
            }
            i=0;
        }
        else {
            i++;
        }
    }
    while(edge == LEFTEDGE && callstack[i].width != 0){
        if(callstack[i].x == x && callstack[i].y+callstack[i].height == y){
            y-=callstack[i].height;
            if(y == 0){
                nextEdge(edge);
            }
            i=0;
        }
        else {
            i++;
        }
    }
    if(edge == CENTER){
        /* rectangles are placed all along the perimeter of the square.
         * Now match will use a different strategy to match the remaining space
         * with what remains in stack */
        if(match(stack,callstack,space)){
            report(callstack,side);
            return TRUE;
        }
        return FALSE;
    }
    switch(edge){
    case TOPEDGE:
        goal=side-x;
        break;
    case RIGHTEDGE:
        goal=side-y;
        break;
    case BOTTOMEDGE:
        goal=x;
        break;
    case LEFTEDGE:
        /* Still a good assumption that callstack[0] is at 0,0 */
        goal=y-callstack[0].height;
        break;
    default:
        fprintf(stderr,"Error: buildedge has unexpected edge (b): %d\n",edge);
        exit(0);
    }
    nextgoal=goal-mindim;
    for(i=0;stack[i].width;i++){
        if(isCurrent(stack[i])){
            for(d=0;d<2;d++){
                switch(edge){
                case TOPEDGE:
                    if(stack[i].width == goal || stack[i].width <= nextgoal){
                        stack[i].x=x;
                        stack[i].y=y;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case RIGHTEDGE:
                    if(stack[i].height == goal || stack[i].height <= nextgoal){
                        stack[i].x=x-stack[i].width;
                        stack[i].y=y;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case BOTTOMEDGE:
                    if(stack[i].width == goal || stack[i].width <= nextgoal){
                        stack[i].x=x-stack[i].width;
                        stack[i].y=y-stack[i].height;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                case LEFTEDGE:
                    if(stack[i].height == goal || stack[i].height <= nextgoal){
                        stack[i].x=x;
                        stack[i].y=y-stack[i].height;
                        if(!stackoverlap(callstack, stack[i])){
                            spacetxn=nexttransaction(space);
                            stacktxn=nexttransaction(stack);
                            deleteTxn(stack[i],stacktxn);
                            removerectangle(space, stack[i], spacetxn);
                            if(narrow(space) >= mindim && smallest(space) >= minarea){
                                rpush(callstack, stack[i]);
                                if(buildedge(stack, callstack, side, space)){
                                    return TRUE;
                                }
                                pop(callstack);
                            }
                            rollback(space, spacetxn);
                            rollback(stack, stacktxn);
                            stack[i].x=stack[i].y=0;
                        }
                    }
                    break;
                default:
                    fprintf(stderr,"Error: buildedge has unexpected edge (c): %d\n",edge);
                    exit(0);
                }
                if(callstack[0].width != 0 && stack[i].width != stack[i].height){
                    stack[i]=rotate(stack[i]);
                }
                else {
                    break;
                }
            }
        }
    }
    return FALSE;
}
int populatestack(rectangle *stack, int score, int side, int rectangles){
    int offset,negative,area,mindim;
    rectangle local;

    int avg_area=(side*side)/rectangles;

    if(avg_area < 4){
        /* It's getting too small - really */
        return FALSE;
    }
    local.x=0;
    local.y=0;
    local.created=0;
    local.deleted=NOTYET;

    initstack(stack,MAXFACTORS);
    for(offset=1;offset<=score;offset++){
        negative=offset&1;
        area=avg_area + (negative?(0-(offset>>1)):(offset>>1));
        mindim=area/side;

        if(side*(area/side) == area){
            local.width=side;
            local.height=area/side;
            rpush(stack,local);
        }

        if(area > 0){
            for(local.width=side-mindim;local.width>=area/local.width;local.width--){
                if(local.width*(area/local.width) == area){
                    local.height=area/local.width;
                    rpush(stack,local);
                }
            }
        }
    }
    return TRUE;
}
int solve(int side,int rectangles,int score){
    rectangle stack[MAXFACTORS],callstack[MAXFACTORS];
    rectangle space[MAXFACTORS];
    rectangle universe;

    if(!populatestack(stack, score, side, rectangles)){
        return FALSE;
    }
    if(sumstack(stack) >= side*side){
        initstack(callstack,MAXFACTORS);
        initstack(space,MAXFACTORS);

        /* Initialize space (not occupied by a rectangle) to be side by side
         * where side is the height/width of the square into which the rectangles fit. */
        universe.width=universe.height=side;
        universe.x=universe.y=0;
        universe.created=0;
        universe.deleted=NOTYET;
        rpush(space, universe);

        if(buildedge(stack,callstack,side,space)){
            return TRUE;
        }
    }
    return FALSE;
}
int containsPoint(rectangle a, int x, int y){
    return a.x <= x && a.y <= y && a.x+a.width > x && a.y+a.height > y;
}
int containsRectangle(rectangle a, rectangle b){
    return containsPoint(a, b.x, b.y) && containsPoint(a, b.x+b.width-1, b.y) && containsPoint(a, b.x, b.y+b.height-1) && containsPoint(a, b.x+b.width-1, b.y+b.height-1);
}
int areEqual(rectangle a, rectangle b){
    return a.x == b.x && a.y == b.y && a.width == b.width && a.height == b.height;
}
int nexttransaction(rectangle *r){
    int i,n=NOTYET;

    for(i=0;r[i].width;i++){
        n=max(n,max(r[i].created,r[i].deleted));
    }
    return n+1;
}
void splitrectanglevertically(rectangle *space, int i, int x, int txn){
    rectangle left, right;
    left=right=space[i];
    right.x=x;
    left.width=right.x-left.x;
    right.width-=left.width;
    left.created=right.created=space[i].deleted=txn;
    rpush(space,left);
    rpush(space,right);
}
void splitrectanglehorizontally(rectangle *space, int i, int y, int txn){
    rectangle top, bottom;
    top=bottom=space[i];
    bottom.y=y;
    top.height=bottom.y-top.y;
    bottom.height-=top.height;
    top.created=bottom.created=space[i].deleted=txn;
    rpush(space,top);
    rpush(space,bottom);
}
int smallest(rectangle *space){
    int i,j,smallest;
    rectangle current;
    smallest=0;
    for(i=0;space[i].width;i++){
        if(isCurrent(space[i])){
            current=space[i];
            for(j=0;space[j].width;j++){
                if(isCurrent(space[j]) && i != j){
                    if(current.x+current.width == space[j].x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.width+=space[j].width;
                    }
                    else if(space[j].x+space[j].width == current.x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.x=space[j].x;
                        current.width+=space[j].width;
                    }
                    else if(current.y+current.height == space[j].y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.height+=space[j].height;
                    }
                    else if(space[j].y+space[j].height == current.y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.y=space[j].y;
                        current.height+=space[j].height;
                    }
                }
            }
            if(smallest == 0){
                smallest=current.width * current.height;
            }
            else if(smallest > current.width * current.height){
                smallest=current.width * current.height;
            }
        }
    }
    return smallest;
}
int narrow(rectangle *space){
    int i,j;
    rectangle smallest,current;

    smallest.width=0;
    for(i=0;space[i].width;i++){
        current=space[i];
        if(isCurrent(current)){
            for(j=0;space[j].width;j++){
                if(isCurrent(space[j]) && i != j){
                    if(current.width <= current.height
                    && current.x+current.width == space[j].x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.width+=space[j].width;
                    }
                    else if(current.width <= current.height
                    && space[j].x+space[j].width == current.x
                    && space[j].y <= current.y && space[j].y+space[j].height >= current.y+current.height){
                        current.x=space[j].x;
                        current.width+=space[j].width;
                    }

                    if(current.width >= current.height
                    && current.y+current.height == space[j].y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.height+=space[j].height;
                    }
                    else if(current.width >= current.height
                    && space[j].y+space[j].height == current.y
                    && space[j].x <= current.x && space[j].x+space[j].width >= current.x+current.width){
                        current.y=space[j].y;
                        current.height+=space[j].height;
                    }
                }
            }
            if(smallest.width == 0){
                smallest=current;
            }
            else if(min(smallest.width,smallest.height) > min(current.width,current.height)){
                smallest=current;
            }
        }
    }
    return min(smallest.width,smallest.height);
}
int notEmpty(rectangle *space){
    int i,count;

    for(i=0,count=0;space[i].width;i++){
        if(isCurrent(space[i])){
            count++;
        }
    }
    return count;
}
int isAdjacent(rectangle r, rectangle s){
    if(r.y == s.y+s.height && r.x < s.x+s.width && s.x < r.x+r.width){
        return TOPEDGE;
    }
    if(s.x == r.x+r.width && r.y < s.y+s.height && s.y < r.y+r.height){
        return RIGHTEDGE;
    }
    if(s.y == r.y+r.height && r.x < s.x+s.width && s.x < r.x+r.width){
        return BOTTOMEDGE;
    }
    if(r.x == s.x+s.width && r.y < s.y+s.height && s.y < r.y+r.height){
        return LEFTEDGE;
    }
    return NOTYET;
}

int adjacentrectangle(rectangle *space, int k, int k0){
    int i,edge;
    for(i=k0+1;space[i].width;i++){
        if(i != k && isCurrent(space[i])){
            if(isAdjacent(space[k],space[i]) != NOTYET){
                return i;
            }
        }
    }
    return NOTYET;
}
int expanse(rectangle *space, int j, int d){ /* Returns how far space[j] can expand in the d direction */
    int extent,k,giveUp,distance;
    rectangle result=space[j];

    extent=0;
    giveUp=FALSE;
    distance=0;
    if(d == TOPEDGE || d == BOTTOMEDGE){
        while(extent < space[j].width && !giveUp){
            giveUp=TRUE;
            for(k=0;space[k].width;k++){
                if(k != j && isCurrent(space[k]) && isAdjacent(space[j],space[k]) == d){
                    if(space[j].x+extent == space[k].x){
                        extent+=space[k].width;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                    else if(space[j].x+extent > space[k].x && space[j].x+extent < space[k].x+space[k].width){
                        extent=space[k].x+space[k].width-space[j].x;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                }
            }
        }
        if(extent < space[j].width){
            return 0;
        }
        return space[j].height+distance;
    }
    else if(d == LEFTEDGE || d == RIGHTEDGE){
        while(extent < space[j].height && !giveUp){
            giveUp=TRUE;
            for(k=0;space[k].width;k++){
                if(k != j && isCurrent(space[k]) && isAdjacent(space[j],space[k]) == d){
                    if(space[j].y+extent == space[k].y){
                        extent+=space[k].height;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                    else if(space[j].y+extent > space[k].y && space[j].y+extent < space[k].y+space[k].height){
                        extent=space[k].y+space[k].height-space[j].y;
                        if(distance == 0){
                            distance=expanse(space,k,d);
                        }
                        else {
                            distance=min(distance,expanse(space,k,d));
                        }
                        giveUp=FALSE;
                    }
                }
            }
        }
        if(extent < space[j].height){
            return 0;
        }
        return space[j].width+distance;
    }
    return 0;
}
int match(rectangle *stack, rectangle *callstack, rectangle *space){
    int i,j,k,d,goal,mn;
    int height;
    int spacetxn, stacktxn, calltxn;
    int map;
    rectangle r;

    for(i=0,goal=0;space[i].width;i++){
        if(isCurrent(space[i])){
            goal+=space[i].width*space[i].height;
        }
    }
    if(goal == 0){
        return TRUE;
    }
    mn=minstack(stack);
    if(goal < mn){
        /* The goal (space available) is smaller than any rectangle left in the stack */
        return FALSE;
    }
    spacetxn=nexttransaction(space);
    stacktxn=nexttransaction(stack);
    calltxn=nexttransaction(callstack);
    for(j=0;space[j].width;j++){
        for(i=0;stack[i].width;i++){
            if(isCurrent(stack[i]) && isCurrent(space[j])){
                if(congruent(space[j], stack[i]) && adjacentrectangle(space,j,NOTYET) == NOTYET){
                    r=space[j];
                    r.created=calltxn;
                    rpush(callstack, r);
                    deleteTxn(stack[i],stacktxn);
                    deleteTxn(space[j],spacetxn);
                }
            }
        }
    }
    if(!notEmpty(space)){
        return TRUE;
    }
    rectangle e;
    for(j=0;space[j].width;j++){
        if(isCurrent(space[j])){
            e=space[j];
            for(k=0,map=0;space[k].width;k++){
                if(k != j && isCurrent(space[k])){
                    d=isAdjacent(space[j], space[k]);
                    if(d != NOTYET){
                        map|=d;
                    }
                }
            }
            if(bitcount(map) == 1){ /* space[j] has adjacent space on only one side */
                if(map == TOPEDGE || map == BOTTOMEDGE){
                    e.height=expanse(space,j,map);
                }
                else if(map == LEFTEDGE || map == RIGHTEDGE){
                    e.width=expanse(space,j,map);
                }
                for(i=0;stack[i].width;i++){
                    if(isCurrent(stack[i])){
                        if(congruent(e, stack[i])){
                            e.created=calltxn;
                            rpush(callstack, e);
                            deleteTxn(stack[i],stacktxn);
                            if(!removerectangle(space, e, spacetxn)){
                                printf("Logic error in match/expanse.  Terminating\n");
                                exit(0);
                            }
                            if(match(stack,callstack,space)){
                                return TRUE;
                            }
                            else {
                                rollback(stack,stacktxn);
                                rollback(callstack,calltxn);
                                rollback(space,spacetxn);
                                return FALSE;
                            }
                        }
                        else if(congruent(space[j], stack[i])){
                            r=space[j];
                            r.created=calltxn;
                            rpush(callstack, r);
                            deleteTxn(stack[i],stacktxn);
                            if(!removerectangle(space, r, spacetxn)){
                                printf("Logic error in match/expanse.  Terminating\n");
                                exit(0);
                            }
                            if(match(stack,callstack,space)){
                                return TRUE;
                            }
                            else {
                                rollback(stack,stacktxn);
                                rollback(callstack,calltxn);
                                rollback(space,spacetxn);
                                return FALSE;
                            }
                        }
                    }
                }
            }
        }
    }
    if(notEmpty(space)){
        rollback(stack,stacktxn);
        rollback(callstack,calltxn);
        rollback(space,spacetxn);
        return FALSE;
    }
    return TRUE;
}
int removerectangle(rectangle *space, rectangle r, int ntxn){
    int i,status=TRUE;
    for(i=0;space[i].width;i++){
        if(space[i].deleted == NOTYET){
            if(areEqual(space[i], r)){
                space[i].deleted=ntxn;
                return TRUE;
            }
            else if(containsRectangle(space[i], r)){
                if(r.x > space[i].x){
                    splitrectanglevertically(space, i, r.x, ntxn);
                }
                else if(r.y > space[i].y){
                    splitrectanglehorizontally(space, i, r.y, ntxn);
                }
                else if(r.x+r.width < space[i].x+space[i].width){
                    splitrectanglevertically(space, i, r.x+r.width, ntxn);
                }
                else if(r.y+r.height < space[i].y+space[i].height){
                    splitrectanglehorizontally(space, i, r.y+r.height, ntxn);
                }
            }
            else if(overlap(space[i], r)){  /* we have to split both */
                rectangle aux;
                if(r.x < space[i].x){
                    aux=r;
                    aux.width=space[i].x-r.x;
                    r.x+=aux.width;
                    r.width-=aux.width;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.x+r.width > space[i].x+space[i].width){
                    aux=r;
                    aux.x=space[i].x+space[i].width;
                    aux.width=r.x+r.width-aux.x;
                    r.width-=aux.width;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.y < space[i].y){
                    aux=r;
                    aux.height=space[i].y-aux.y;
                    r.y+=aux.height;
                    r.height-=aux.height;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(r.y+r.height > space[i].y+space[i].height){
                    aux=r;
                    aux.y=space[i].y+space[i].height;
                    aux.height=r.y+r.height-aux.y;
                    r.height-=aux.height;
                    if(!removerectangle(space,aux,ntxn)){
                        return FALSE;
                    }
                }
                if(areEqual(space[i], r)){
                    space[i].deleted=ntxn;
                    return TRUE;
                }
                else {
                    if(!removerectangle(space,r,ntxn)){
                        return FALSE;
                    }
                    return TRUE;
                }
            }
        }
    }
    return TRUE;
}
int main(int argc, char *argv[]){
    int side=15;
    int n=5;
    int budget=0;
    int status;
    while((status=getopt(argc,argv,"l:n:")) >= 0){
        switch(status){
        case 'l':
            sscanf(optarg,"%d",&side);
            break;
        case 'n':
            sscanf(optarg,"%d",&n);
            break;
        }
    }
    budget=64;
    while(solve(side,n,budget) == FALSE){
        budget+=16;
    }
}
Jay Anderson
sumber