Saya tahu ada banyak perpustakaan untuk pembelajaran mesin dan pembelajaran mendalam seperti caffe, Theano, TensorFlow, keras, ... Tetapi bagi saya sepertinya saya harus tahu arsitektur jaringan syaraf, yang ingin saya gunakan.
Apakah ada alat (visual) yang memungkinkan untuk bereksperimen dengan desain jaringan yang berbeda dan menerapkannya pada data sendiri?
Saya sedang memikirkan sesuatu seperti TensorFlow Playground , tetapi dengan data n-dimensi dan jenis lapisan yang berbeda.
Terima kasih sebelumnya!
neural-networks
deep-learning
conv-neural-network
Marc Osterland
sumber
sumber
Jawaban:
Ya, Ada banyak alat yang tersedia untuk merancang dan menerapkan jaringan saraf hanya dengan drag dan drop. Salah satunya adalah Deep Learning Studio Dikembangkan oleh Deep Cognition Inc , platform pembelajaran mendalam yang kuat dengan antarmuka visual dalam produksi memberikan solusi komprehensif untuk konsumsi data. , pengembangan model, pelatihan, penyebaran dan manajemen. Pengguna Deep Learning Studio memiliki kemampuan untuk mengembangkan dan menyebarkan solusi pembelajaran mendalam dengan cepat melalui integrasi yang kuat dengan TensorFlow, MXNet dan Keras.
Fitur ML otomatis mereka akan secara otomatis menghasilkan model jaringan saraf.
sumber
Untuk caffe ada alat pihak ketiga yang disebut Expresso ( http://val.serc.iisc.ernet.in/expresso/ ) yang menyediakan beberapa GUI untuk membantu Anda memulai.
Selain itu, NVIDIA DIGITS ( https://developer.nvidia.com/digits ) juga mengklaim sebagai alat interaktif:
Semoga ini membantu!
sumber
Proses menemukan arsitektur jaringan yang optimal untuk masalah Anda adalah jantung dari proses pembelajaran yang mendalam - di situlah Anda menggunakan pengetahuan Anda sebelumnya untuk mengoptimalkan kinerja.
Jujur, saya tidak benar-benar melihat bagaimana GUI seperti yang Anda sarankan dapat memenuhi tujuan ini, seperti:
Untuk dapat menilai arsitektur yang diberikan, Anda perlu melatih jaring pada data Anda (dari awal). Untuk jaringan saraf yang dalam, ini adalah proses yang bisa memakan waktu cukup lama. Jadi, jika setiap klik yang Anda buat membutuhkan perhitungan satu jam, itu cukup banyak mengambil seluruh keuntungan dari UI grafis off.
Sebagian besar implementasi (caffe, TensorFlow) memiliki sintaks sederhana, sehingga mengubah arsitektur (mengubah lapisan, menyetel parameter-hiper) benar-benar hanya berganti dengan mengubah nilai string tunggal atau konstan: tidak ada yang benar-benar Anda perlukan untuk GUI.
Jika, di sisi lain, apa yang Anda cari adalah pendekatan yang lebih sistematis untuk bisnis penyetelan parameter, Anda dapat membaca tentang Penyesuaian Parameter Otomatis .
sumber
Ya, ada editor visual baru untuk jaringan saraf kecil yang disebut "Desainer Jaringan Neural" yang tersedia di Apple App Store untuk Mac.
sumber
Saya telah bekerja pada antarmuka pengguna jaringan saraf drag-and-drop (Ennui) yang melatih di browser dan memungkinkan pengguna untuk mengekspor Python yang dihasilkan kode. Kami memiliki berbagai lapisan termasuk padat, convolutional, maxpooling, batchnorm, dll. Membangun model bercabang seperti ResNets juga didukung. Kami menerapkan beberapa visualisasi umum juga.
Ini adalah gambar Ennui
Berikut ini contoh visualisasi
Anda dapat mengunjungi situs webnya di https://math.mit.edu/ennui
Implementasi open-source ada di https://github.com/martinjm97/ENNUI
Jangan ragu untuk menghubungi dengan komentar atau pertanyaan.
sumber