Regresi terhadap kekeliruan rata-rata vs penjudi

29

Di satu sisi, saya memiliki regresi ke mean dan di sisi lain saya memiliki kekeliruan penjudi .

Kekeliruan Gambler didefinisikan oleh Miller dan Sanjurjo (2019) sebagai "keyakinan keliru bahwa urutan acak memiliki kecenderungan sistematis terhadap pembalikan, yaitu bahwa garis-garis hasil yang serupa lebih cenderung berakhir daripada berlanjut." Misalnya, koin yang jatuh menimpa beberapa kepala. kali berturut-turut akan dianggap tidak proporsional untuk gagal pada percobaan berikutnya.

Saya telah memiliki kinerja yang baik di pertandingan terakhir dan, menurut regresi ke rata-rata, mungkin saya akan memiliki kinerja yang lebih buruk di pertandingan berikutnya.

Tetapi menurut kesalahan penjudi: Pertimbangkan dua kemungkinan berikut, dengan asumsi koin yang adil

  1. probabilitas 20 ekor, maka 1 ekor =0,520×0,5=0,521
  2. probabilitas 20 kepala, maka 1 kepala =0,520×0,5=0,521

Kemudian...

Pertimbangkan contoh sederhana: Kelas siswa mengambil 100-item tes benar / salah pada subjek. Misalkan semua siswa memilih secara acak pada semua pertanyaan. Kemudian, skor masing-masing siswa akan menjadi realisasi dari satu set variabel independen dan terdistribusi secara identik, dengan rata-rata yang diharapkan 50.

Secara alami, beberapa siswa akan skor secara substansial di atas 50 dan beberapa secara substansial di bawah 50 hanya secara kebetulan. Jika seseorang hanya mengambil nilai tertinggi 10% dari siswa dan memberi mereka tes kedua di mana mereka kembali memilih secara acak pada semua item, skor rata-rata lagi diperkirakan akan mendekati 50.

Dengan demikian rata-rata siswa ini akan "mundur" sepanjang jalan kembali ke rata-rata semua siswa yang mengikuti tes asli. Tidak peduli berapa skor siswa pada tes asli, prediksi terbaik skor mereka pada tes kedua adalah 50.

Secara khusus Jika seseorang hanya mengambil skor tertinggi 10% dari siswa dan memberi mereka tes kedua di mana mereka kembali memilih secara acak pada semua item, skor rata-rata lagi diperkirakan akan mendekati 50.

Menurut kesalahan penjudi, bukankah seharusnya diharapkan probabilitas yang sama untuk skor dan belum tentu lebih mendekati 50?

Miller, JB, & Sanjurjo, A. (2019). Bagaimana Pengalaman Mengkonfirmasikan Kekeliruan Penjudi Saat Ukuran Sampel Diabaikan.

Luis P.
sumber
5
Saya tidak melihat bagaimana Kekeliruan Gambler terhubung dengan dua probabilitas yang Anda hitung. Bisakah Anda menjelaskan lebih tepatnya apa yang Anda pahami tentang kekeliruan ini?
whuber
Apakah gim Anda memiliki urutan kepala terlama?
AdamO
1
Saya akan sangat suka penjelasan untuk ini. Jawabannya sejauh ini tampaknya belum menjelaskannya untuk saya. Regresi terhadap rata-rata tampaknya membuat peristiwa independen bergantung. Mungkin regresi ke rata-rata tidak pernah bisa digunakan hanya untuk satu pengamatan, itu hanya berlaku ketika ada rata-rata.
icc97

Jawaban:

28

Saya pikir kebingungan dapat diselesaikan dengan mempertimbangkan bahwa konsep "regresi ke rata-rata" benar-benar tidak ada hubungannya dengan masa lalu. Ini hanya pengamatan tautologis bahwa pada setiap iterasi percobaan kami mengharapkan hasil rata-rata. Jadi jika kita sebelumnya memiliki hasil di atas rata-rata maka kita mengharapkan hasil yang lebih buruk, atau jika kita memiliki hasil di bawah rata-rata, kita mengharapkan yang lebih baik. Poin kuncinya adalah bahwa harapan itu sendiri tidak tergantung pada sejarah sebelumnya seperti dalam kekeliruan penjudi.

dsaxton
sumber
Persis. Dalam konteks Q ini, jika kepala dapat diartikan sebagai "hasil yang baik", maka dalam contoh OP, hasil yang lebih buruk kemungkinan akan mengikuti setelah serangkaian hasil yang baik dan hasil yang lebih baik cenderung mengikuti setelah serangkaian hasil yang buruk .
Amoeba berkata Reinstate Monica
5
Sepertinya Anda menentang diri sendiri. Anda menyatakan the expectation itself does not depend on any previous historydan if we previously had an above average outcome then we expect a worse result. Anda menggunakan kata harapkan di kedua tempat dan berbicara tentang masa lalu / sejarah sebelumnya di kedua tempat.
Erik
6
Tidak ada kontradiksi. Kami tidak mengharapkan hasil yang lebih buruk karena hasilnya sebenarnya tergantung satu sama lain, kami mengharapkan hasil yang lebih buruk karena kami melihat satu yang berada di atas harapan kami. Harapannya sendiri konstan dan tidak berubah sebagai hasil dari melihat hasil sebelumnya.
dsaxton
@Erik Mungkin penulisan ulang mungkin bisa membantu, tetapi yang perlu diperhatikan adalah bagaimana membedakan kedua aspek tersebut. Pertama, kami mengharapkan hasil rata-rata, atau lebih tepatnya meyakini kemungkinan besar. Ketika membandingkan dengan hasil aktual, harapan itu mungkin relatif baik atau buruk tergantung pada seberapa baik atau buruk hasil itu relatif terhadap harapan kita. Kami tidak mendapatkan informasi tentang masa depan! Kami hanya membandingkan hasil aktual kami dengan rata-rata. (Komentar ini sekarang berlebihan, tapi saya meninggalkannya)
wedstrom
9
Tidak terbalik, karena jawaban Anda menderita ambiguitas yang mendorong pertanyaan di tempat pertama. Yaitu, apa hasil "lebih buruk" setelah hasil rata-rata di atas? OP menafsirkannya sebagai "lebih buruk daripada rata-rata" (interpretasi yang secara intuitif terasa benar karena fallacy dunia yang adil) sementara regresi ke rata-rata berarti itu akan "lebih buruk daripada sejarah". Tanpa menghilangkan sumber kebingungan itu, jawaban Anda (yang benar) hanya dapat dimengerti oleh mereka yang sudah tahu jawaban yang benar. Jika Anda mengeditnya dalam beberapa bentuk, Anda akan mendapatkan upvote saya.
rumtscho
17

Jika Anda menemukan diri Anda dalam posisi seperti itu, sebagai orang yang rasional (dan mengasumsikan koin yang adil), taruhan terbaik Anda adalah menebak saja. Jika Anda menemukan diri Anda dalam posisi seperti penjudi takhayul, taruhan terbaik Anda adalah dengan melihat peristiwa sebelumnya dan mencoba untuk membenarkan alasan Anda tentang masa lalu - mis. "Wow, kepala panas , waktu untuk bertaruh!" atau "Tidak mungkin kita akan melihat kepala yang lain - probabilitas semacam itu sangat rendah!".

Kekeliruan penjudi tidak menyadari bahwa setiap untaian tertentu dari 20 koin melemparkan kita dengan sangat tidak mungkin - misalnya, sangat tidak mungkin untuk membalik 10 kepala dan kemudian 10 ekor, sangat tidak mungkin membalik kepala dan ekor yang berganti-ganti, sangat tidak mungkin terbelah dalam 4's, dll Bahkan sangat tidak mungkin untuk membalik HHTHHTTTHT .. karena untuk string apa pun hanya ada satu cara untuk itu terjadi dari banyak hasil yang berbeda . Dengan demikian, menggabungkan semua ini sebagai "kemungkinan" atau "tidak mungkin" adalah kesalahan, karena mereka semua tidak dapat disamakan.

Regresi terhadap rata-rata adalah keyakinan yang didirikan dengan benar bahwa dalam jangka panjang, pengamatan Anda harus menyatu dengan nilai yang diharapkan terbatas. Sebagai contoh - taruhan saya bahwa 10 dari 20 lemparan koin adalah yang baik karena ada banyak cara untuk mencapainya. Taruhan pada 15 dari 20 secara substansial lebih kecil kemungkinannya karena ada string yang jauh lebih sedikit yang mencapai jumlah akhir itu. Perlu dicatat bahwa jika Anda duduk dan membalik koin (cukup) cukup lama, Anda pada akhirnya akan berakhir dengan sesuatu yang kira-kira 50/50 - tetapi Anda tidak akan berakhir dengan sesuatu yang tidak memiliki "goresan" atau hal mustahil lainnya. peristiwa di dalamnya. Itulah inti perbedaan antara kedua konsep ini.

TL; DR : Regresi terhadap mean mengatakan bahwa seiring waktu, Anda akan berakhir dengan distribusi yang mencerminkan apa yang diharapkan dalam percobaan apa pun. Kekeliruan Gambler (secara keliru) mengatakan bahwa masing-masing individu melempar koin memiliki ingatan tentang hasil sebelumnya, yang akan berdampak pada hasil independen berikutnya.

Derek Janni
sumber
1
Jadi, apakah kesalahan Gambler merupakan konsep yang salah? Saya tidak bisa mendapatkan intinya. Maaf
Luis P.
6
Kekeliruan Penjudi adalah .. yah .. kekeliruan. Itu salah, itu alasan yang buruk. Regresi ke mean adalah statistik murni, meskipun :)
Derek Janni
1
Regression to the mean is the rightly-founded belief that in the long run, your observations should converge to a finite expected value- Itu adalah "kesalahan penjudi" - bahwa setelah serangkaian kepala, ekor sekarang lebih mungkin, karena dengan koin yang adil ia akan bertemu ...
Izkata
2
@Izkata Tidak cukup. Regresi terhadap mean menyatakan bahwa dengan sejumlah besar cobaan, garis-garis di kedua sisi seharusnya kira-kira merata, dan semakin banyak cobaan yang Anda lakukan semakin dekat dengan rata-rata yang sebenarnya Anda dapatkan. Jika Anda membalik cukup untuk mendapatkan goresan 100 ekor, Anda mungkin juga memiliki goresan ekor untuk menyeimbangkannya di suatu tempat dalam distribusi Anda, karena goresan kepala dan ekor sama-sama mungkin terjadi. Yang penting, regresi terhadap rata-rata tidak membuat asumsi pada datum tertentu, hanya pada nilai-nilai agregat ketika ukuran sampel meningkat.
Ethan
1
@Izkata Gambler keliru membuat klaim tentang apa yang akan terjadi dengan hasil tertentu, Regresi terhadap mean membuat pernyataan umum tentang apa yang kita harapkan dari banyak hasil.
Derek Janni
5

Saya selalu mencoba untuk mengingat bahwa regresi menuju mean bukanlah mekanisme kompensasi untuk mengamati outlier.

Tidak ada hubungan sebab dan akibat antara menjalankan perjudian yang luar biasa, kemudian menjadi 50-50 setelah itu. Ini hanya cara yang berguna untuk mengingat bahwa, ketika Anda mengambil sampel dari distribusi, Anda kemungkinan besar akan melihat nilai yang mendekati rata-rata (pikirkan apa yang dikatakan ketidaksetaraan Chebyshev di sini).

Sullysaurus
sumber
2
Yay Chebyshev! Poin yang bagus!
Derek Janni
4

Berikut ini contoh sederhana: Anda telah memutuskan untuk melemparkan total 200 koin. Sejauh ini Anda telah melemparkan 100 dari mereka dan Anda menjadi sangat beruntung: 100% muncul (luar biasa, saya tahu, tapi mari kita tetap sederhana).

Bersyarat pada 100 kepala dalam 100 lemparan pertama, Anda berharap memiliki total 150 kepala di akhir pertandingan. Contoh ekstrem dari kesalahan penjudi adalah berpikir bahwa Anda masih hanya mengharapkan total 100 kepala (yaitu nilai yang diharapkan sebelum memulai permainan), bahkan setelah mendapatkan 100 dalam 100 lemparan pertama. Penjudi itu dengan keliru berpikir 100 lemparan berikutnya pasti ekor. Contoh regresi ke mean (dalam konteks ini) adalah bahwa head-rate Anda 100% diperkirakan akan turun menjadi 150/200 = 75% (yaitu menuju rata-rata 50%) saat Anda menyelesaikan permainan.

Adrian
sumber
1
@whuber ini bukan contoh tinggi ayah dan anak klasik, tapi saya berpendapat itu memenuhi definisi wikipedia: "regresi menuju (atau ke) mean adalah fenomena bahwa jika variabel [misalnya kepala pecahan dalam lemparan koin] adalah ekstrim pada pengukuran pertama, itu akan cenderung lebih dekat dengan rata-rata pada pengukuran kedua "
Adrian
3
1/2
1
Saya pikir memberikan deskripsi yang jelas tentang Kekeliruan Gambler dan Regresi terhadap Mean mungkin lebih penting daripada menawarkan contoh. Ketika hanya contoh-contoh yang diberikan, tidak jelas bagaimana mereka harus dipahami atau bagaimana mereka berhubungan dengan dua mata pelajaran ini.
whuber
1
Sebagai seseorang yang berpikir mirip dengan OP, paragraf kedua Anda adalah satu - satunya contoh dalam semua jawaban yang dengan jelas menjelaskan perbedaannya. Sekarang lebih masuk akal.
Izkata
1
@whuber Itulah yang dilakukan sebagian besar jawaban lainnya, dan mereka sama sekali tidak menjelaskannya untuk saya.
Izkata
2

Saya bisa saja salah, tetapi saya selalu berpikir perbedaannya ada pada asumsi kemerdekaan.

Dalam kesalahan Gambler, masalahnya adalah kesalahpahaman tentang kemerdekaan. Yakin atas sejumlah besar pelemparan koin N Anda akan menjadi sekitar 50-50 split, tetapi jika kebetulan Anda tidak maka pemikiran bahwa lemparan T berikutnya Anda akan membantu meskipun peluangnya salah karena ada setiap lemparan koin tidak tergantung pada sebelumnya.

Regresi terhadap mean adalah, di mana saya melihatnya digunakan, beberapa ide yang menarik tergantung pada gambar sebelumnya atau rata-rata / nilai yang dihitung sebelumnya. Misalnya, gunakan persentase pemotretan NBA. Jika pemain A telah membuat rata-rata 40% dari tembakannya selama karirnya dan memulai tahun baru dengan menembak 70% dalam 5 pertandingan pertamanya, masuk akal untuk berpikir bahwa ia akan mundur ke rata-rata rata-rata karirnya. Ada faktor-faktor dependen yang dapat dan akan mempengaruhi permainannya: goresan panas / dingin, permainan rekan setim, kepercayaan diri, dan fakta sederhana bahwa jika dia mempertahankan 70% pengambilan gambar untuk tahun ini, dia benar-benar akan memusnahkan banyak catatan yang hanya merupakan pencapaian fisik yang mustahil. (di bawah kemampuan kinerja saat ini dari pemain bola basket profesional). Saat Anda memainkan lebih banyak game, persentase pemotretan Anda kemungkinan akan semakin mendekati rata-rata karier Anda.

Marsenau
sumber
Penjelasan Anda tentang regresi terhadap mean terdengar lebih seperti penaksir penyusutan. Bisakah Anda memberikan definisi spesifik tentang apa yang sebenarnya Anda maksud dengan "regresi"?
whuber
Saya mengikuti gagasan "Fenomena ini terjadi karena nilai siswa sebagian ditentukan oleh kemampuan yang mendasari dan sebagian oleh kebetulan" dari Wikipedia. Pemahaman saya adalah sementara ada tingkat probabilitas, hasilnya didorong oleh beberapa kemampuan yang mendasarinya.
Marsenau
2
Terima kasih atas klarifikasi itu. Tidak jelas bagaimana ide itu berlaku untuk gagasan bahwa seiring dengan kemajuan karier seseorang, rata-rata seseorang semakin mendekati rata-rata karier. Kedengarannya seperti tautologi atau versi hukum sejumlah besar. Bahkan, kedengarannya sangat seperti Kekeliruan Gambler itu sendiri!
whuber
1
Atau rata-rata karier Anda akan naik untuk memenuhi kemampuan baru Anda. :) Saya pikir itu adalah kesalahan untuk mengeruhkan air dengan keterampilan yang tidak bisa diperbaiki.
Erik
1
"kesalahpahaman tentang kemerdekaan" - ini tampaknya menjadi titik kritis. Regresi terhadap rata-rata tampaknya membuat peristiwa independen bergantung.
icc97
2

Kuncinya adalah bahwa kami tidak memiliki informasi yang akan membantu kami dengan acara berikutnya (kesalahan penjudi), karena acara berikutnya tidak bergantung pada acara sebelumnya. Kita bisa membuat perkiraan yang masuk akal tentang bagaimana serangkaian uji coba akan berjalan. Tebakan yang masuk akal ini adalah rata-rata alias hasil rata-rata yang kami harapkan. Jadi ketika kita melihat penyimpangan dalam tren rata-rata kembali ke rata-rata, dari waktu ke waktu / uji coba, maka kita menyaksikan regresi terhadap rata-rata.

Seperti yang Anda lihat regresi ke mean adalah serangkaian tindakan yang diamati , itu bukan prediksi. Semakin banyak uji coba yang dilakukan, semakin dekat perkiraan distribusi normal / Gaussian. Ini berarti bahwa saya tidak membuat asumsi atau menebak apa hasil selanjutnya. Dengan menggunakan hukum jumlah besar, saya dapat berteori bahwa meskipun segala sesuatu mungkin menjadi tren saat ini, seiring waktu hal-hal akan menyeimbangkan diri mereka sendiri. Ketika mereka menyeimbangkan diri mereka sendiri, set hasil telah mundur ke rata-rata. Penting untuk dicatat di sini bahwa kami tidak mengatakan bahwa uji coba di masa depan tergantung pada hasil di masa lalu. Saya hanya mengamati perubahan dalam keseimbangan data.

The kesalahan penjudi seperti yang saya mengerti lebih langsung dalam tujuan itu dan berfokus pada prediksi kejadian masa depan. Ini sesuai dengan keinginan penjudi. Biasanya game kesempatan dimiringkan melawan penjudi dalam jangka panjang, sehingga penjudi ingin tahu seperti apa uji coba berikutnya karena mereka ingin memanfaatkan pengetahuan ini. Ini menyebabkan penjudi secara salah berasumsi bahwa persidangan berikutnya tergantung pada persidangan sebelumnya. Ini dapat mengarah pada pilihan netral seperti:

Lima kali terakhir roda roulette mendarat dengan warna hitam, jadi karena itu lain kali aku bertaruh besar untuk warna merah.

Atau pilihannya bisa melayani diri sendiri:

Saya sudah mendapatkan rumah penuh 5 tangan terakhir, jadi saya akan bertaruh besar karena saya sedang menang dan tidak bisa kalah.


Jadi seperti yang Anda lihat ada beberapa perbedaan utama:

  1. Regresi terhadap rata-rata tidak mengasumsikan bahwa uji coba independen tergantung seperti kesalahan penjudi.

  2. Regresi terhadap rata-rata diterapkan pada sejumlah besar data / uji coba, di mana kesalahan penjudi berkaitan dengan uji coba berikutnya.

  3. Regresi terhadap mean menggambarkan apa yang telah terjadi. Kekeliruan penjudi mencoba untuk memprediksi masa depan berdasarkan rata-rata yang diharapkan, dan hasil masa lalu.

Erik
sumber
1
Sebenarnya saya tidak berpikir bahwa regresi ke mean ada hubungannya dengan hukum angka besar atau itu menandakan apa yang Anda katakan itu dalam kalimat pertama.
Amoeba berkata Reinstate Monica
@amoeba jadi jika kita berencana untuk membalik koin 100 kali dan 20 membalik ke pengadilan kita memiliki 20 kepala. Di akhir persidangan kami memiliki 55 kepala. Saya mencoba mengatakan bahwa ini akan menjadi contoh dari "regresi ke mean." Ini dimulai dari sisi-miring tetapi seiring waktu itu menjadi normal. Hukum angka besar sedikit adalah cara lain untuk mengungkapkan gagasan bahwa segala sesuatu akan rata-rata lebih dari cobaan yang cukup, yang sama dengan mengatakan ketidakseimbangan awal akan menyeimbangkan dari waktu ke waktu atau mundur ke arah rata-rata.
Erik
1
Saya kira saya mulai mendapatkan inti dari tema-tema itu dengan kunci Anda, Erik. Indah! :) xxx
Luis P.
2

Apakah siswa dengan nilai lebih tinggi yang mendapat nilai lebih buruk pada tes ulang curang?

Pertanyaan itu menerima suntingan besar sejak enam jawaban terakhir.

100

Atau haruskah mereka menjauh dari roda roulette?

50%50%10050

60%2.8%30006085

8560%50%10060%2.8%2852.8%8560%

50%1005050

Koin beruntung dan keberuntungan beruntung

100055%G100045%B1000F) dan secara acak mendistribusikan ini. Ini analog dengan mengasumsikan kemampuan / pengetahuan yang lebih tinggi dan lebih rendah di bawah uji pengambilan contoh, tetapi lebih mudah untuk beralasan dengan benar tentang benda mati.

(551000+451000+501000)/3000=5060%18.3%0,2%2.8%60%7.1%60%21

2160%50%10086%=18.3%/(18.3%+0,2%+2.8%)1%=0,2%/(18.3%+0,2%+2.8%)13%86%55+1%45+13%50=54.251006050

Jadi, bahkan ketika beberapa koin lebih baik daripada yang lain, keacakan dalam koin membalik berarti bahwa memilih pemain terbaik dari tes masih akan menunjukkan beberapa regresi dengan rata-rata dalam pengujian ulang. Dalam model yang dimodifikasi ini, hot-kidal tidak lagi menjadi kesalahan besar - mencetak skor yang lebih baik di babak pertama berarti kemungkinan yang lebih tinggi untuk memiliki koin yang bagus! Namun, kekeliruan penjudi masih merupakan kekeliruan - mereka yang mengalami nasib baik tidak dapat diharapkan untuk dikompensasi dengan nasib buruk saat pengujian ulang.

A. Webb
sumber
Saya baru saja mendapat ide. Saya akan mensimulasikan model itu dan melihat cara kerjanya.
Luis P.
1

Mereka mengatakan hal yang sama. Anda sebagian besar bingung karena tidak ada satu percobaan dalam contoh flip koin memiliki hasil ekstrem (H / T 50/50). Ubah itu menjadi "membalik sepuluh koin yang adil pada waktu yang sama di setiap percobaan", dan penjudi ingin memperbaikinya. Maka pengukuran ekstrem adalah bahwa Anda kebetulan melihat semuanya adalah kepala.

Kekeliruan penjudi: Perlakukan setiap hasil taruhan (hasil membalik koin) sebagai IID . Jika Anda sudah tahu distribusi saham-saham IID tersebut, maka prediksi berikutnya harus datang langsung dari distribusi yang diketahui dan tidak ada hubungannya dengan hasil historis (atau masa depan) (alias IID lainnya).

Regresi terhadap mean: Perlakukan setiap hasil tes sebagai IID (karena siswa diasumsikan menebak secara acak dan tidak memiliki keterampilan nyata). Jika Anda sudah tahu distribusi saham-saham IID tersebut, maka prediksi berikutnya datang langsung dari distribusi yang diketahui dan tidak ada hubungannya dengan hasil historis (atau masa depan) (alias IID lainnya) ( persis seperti sebelum sampai di sini ). Tetapi, dengan CLT , jika Anda mengamati nilai ekstrim dalam satu pengukuran (mis. Kebetulan Anda hanya mengambil sampel 10% siswa terbaik dari tes pertama), Anda harus tahu hasil dari pengamatan / pengukuran Anda berikutnya masih akan dihasilkan dari yang diketahui. distribusi (dan dengan demikian lebih cenderung lebih dekat dengan rata-rata daripada bertahan di ekstrem).

Jadi pada dasarnya, mereka berdua mengatakan pengukuran selanjutnya akan datang dari distribusi, bukan hasil sebelumnya.

Ya
sumber
Ini bukan kutipan yang benar dari teorema limit pusat. Ini hanyalah pernyataan tentang apa acara independen itu.
AdamO
0

Misalkan X dan Y menjadi dua variabel acak seragam iid pada [0,1]. Misalkan kita mengamati mereka satu demi satu.

Kekeliruan Penjudi: P (Y | X)! = P (Y) Ini, tentu saja, omong kosong karena X dan Y adalah independen.

Regresi terhadap mean: P (Y <X | X = 1)! = P (Y <X) Ini benar: LHS adalah 1, LHS <1

anonim
sumber
0

Terima kasih atas jawaban Anda, saya pikir saya bisa memahami perbedaan antara Regresi dengan mean dan kekeliruan Gambler. Terlebih lagi, saya membangun basis data untuk membantu saya menggambarkan dalam kasus "nyata".

Saya membangun situasi ini: Saya mengumpulkan 1000 siswa dan saya menempatkan mereka untuk melakukan tes menjawab pertanyaan secara acak.

Skor tes berkisar dari 01 hingga 05. Karena mereka menjawab pertanyaan secara acak, maka setiap skor memiliki peluang 20% ​​untuk dicapai. Jadi untuk tes pertama jumlah siswa dengan skor 05 harus mendekati 200

10000,20

200

Saya memiliki 196 siswa dengan skor 05 yang sangat dekat dengan 200 siswa yang diharapkan.

Jadi saya menempatkan 196 siswa itu mengulang tes yang diterima 39 siswa dengan skor 05.

1960,20

39

Nah, menurut hasil saya mendapat 42 siswa yang sesuai dengan yang diharapkan.

Bagi mereka yang mendapat skor 05 saya menempatkan mereka untuk mengulangi tes dan sebagainya ...

Karena itu, angka yang diharapkan adalah:

RETEST yang diharapkan 03

420,20

8

(3.3) Hasil (8)

RETEST yang diharapkan 04

80,20

1,2

(4.3) Hasil (2)

RETEST yang diharapkan 05

20,20

0,1

(4.3) Hasil (0)

0,204

0,205=0,00032

0,000323500=1.2

Oleh karena itu probabilitas satu siswa mendapat skor 05 di semua 05 tes tidak ada hubungannya dengan skor terakhirnya, maksud saya, saya tidak boleh menghitung probabilitas pada setiap tes secara tunggal. Saya harus mencari tes-tes 05 seperti satu peristiwa dan menghitung probabilitas untuk peristiwa itu.

Luis P.
sumber