Angka yang Hilang Direvisi

22

Latar Belakang:

Saya awalnya memposting pertanyaan ini tadi malam, dan menerima serangan balik karena ketidakjelasannya. Sejak itu saya telah berkonsultasi dengan banyak personel mengenai tidak hanya kata-kata dari masalah, tetapi juga kerumitannya (yang bukan O (1)). Masalah pemrograman ini adalah putaran jahat pada pertanyaan wawancara Amazon.

Pertanyaan:

Diberikan String bilangan bulat yang disatukan secara acak [0, 250), 0 hingga 250 eksklusif, ada SATU nomor yang hilang dalam urutan. Tugas Anda adalah menulis sebuah program yang akan menghitung angka yang hilang ini. Tidak ada angka lain yang hilang dalam urutan selain yang, dan itulah yang membuat masalah ini sangat sulit, dan mungkin sulit secara komputasi.

Melakukan masalah ini dengan tangan pada Strings yang lebih kecil, seperti contoh 1 dan 2 di bawah ini jelas sangat mudah. Sebaliknya, menghitung angka yang hilang pada kumpulan data yang sangat besar yang melibatkan angka tiga digit atau empat digit akan sangat sulit. Gagasan di balik masalah ini adalah untuk membangun sebuah program yang akan melakukan proses ini UNTUK Anda.

Informasi penting:

Satu hal yang tampak agak membingungkan ketika saya memposting masalah ini tadi malam adalah: apa sebenarnya nomor yang hilang didefinisikan sebagai. Nomor yang hilang adalah nomor di dalam kisaran yang ditentukan di atas; TIDAK harus digit. Dalam contoh 3, Anda akan melihat bahwa nomor yang hilang adalah 9, meskipun muncul dalam urutan. Ada 3 tempat DIGIT 9 akan muncul dalam serangkaian [0, 30): "9", "19", dan "29". Tujuan Anda adalah untuk membedakannya, dan menemukan bahwa 9 adalah NUMBER yang hilang (di dalam contoh 3). Dengan kata lain, bagian yang sulit terletak pada mengetahui urutan urutan digit mana yang lengkap dan yang termasuk nomor lainnya.

Memasukkan:

Input adalah String S, yang berisi bilangan bulat dari 0 hingga 249 inklusif, atau 0 hingga 250 eksklusif (dengan kata lain, [0, 250)). Bilangan bulat ini, seperti yang dinyatakan di atas, diacak untuk membuat urutan acak. Tidak ada pembatas ("42, 31, 23, 44"), atau padding 0's (003076244029002); masalahnya persis seperti yang dijelaskan dalam contoh. Dijamin bahwa hanya ada 1 solusi dalam masalah aktual. Beberapa solusi tidak diizinkan untuk ini.

Kriteria Menang:

Siapa pun yang memiliki penggunaan memori tercepat, dan terendah akan menjadi pemenang. Dalam peristiwa ajaib yang mengikat waktu, memori yang lebih rendah akan digunakan untuk pemecah waktu. Harap sebutkan Big O jika Anda bisa!

Contoh:

Contoh 1 dan 2 memiliki kisaran [0, 10)

Contoh 3 dan 4 memiliki kisaran [0, 30)

(Contoh 1-4 hanya untuk demonstrasi. Program Anda tidak perlu menanganinya.)

Contoh 5 memiliki kisaran [0, 250)

1. 420137659    
- Missing number => 8

2. 843216075    
- Missing number => 9  

3. 2112282526022911192312416102017731561427221884513 
- Missing number => 9

4. 229272120623131992528240518810426223161211471711
- Missing number => 15

5. 11395591741893085201244471432361149120556162127165124233106210135320813701207315110246262072142253419410247129611737243218190203156364518617019864222241772384813041175126193134141008211877147192451101968789181153241861671712710899168232150138131195104411520078178584419739178522066640145139388863199146248518022492149187962968112157173132551631441367921221229161208324623423922615218321511111211121975723721911614865611197515810239015418422813742128176166949324015823124214033541416719143625021276351260183210916421672722015510117218224913320919223553222021036912321791591225112512304920418584216981883128105227213107223142169741601798025
- Missing number => 71

Test Data: 

Problem 1: 6966410819610521530291368349682309217598570592011872022482018312220241246911298913317419721920718217313718080857232177134232481551020010112519172652031631113791105122116319458153244261582135510090235116139611641267691141679612215222660112127421321901862041827745106522437208362062271684640438174315738135641171699510421015199128239881442242382361212317163149232839233823418915447142162771412092492141987521710917122354156131466216515061812273140130240170972181176179166531781851152178225242192445147229991613515911122223419187862169312013124150672371432051192510724356172282471951381601241518410318414211212870941111833193145123245188102

Problem 2: 14883423514241100511108716621733193121019716422221117630156992324819917158961372915140456921857371883175910701891021877194529067191198226669314940125152431532281961078111412624224113912011621641182322612016512820395482371382385363922471472312072131791925510478122073722091352412491272395020016194195116236186596116374117841971602259812110612913254255615723013185162206245183244806417777130181492211412431591541398312414414582421741482461036761192272120204114346205712198918190242184229286518011471231585109384415021021415522313136146178233133168222201785172212108182276835832151134861116216716910511560240392170208215112173234136317520219

Problem 3: 1342319526198176611201701741948297621621214122224383105148103846820718319098731271611601912137231471099223812820157162671720663139410066179891663131117186249133125172622813593129302325881203242806043154161082051916986441859042111711241041590221248711516546521992257224020174102234138991752117924457143653945184113781031116471120421331506424717816813220023315511422019520918114070163152106248236222396919620277541101222101232171732231122301511263822375920856142187182152451585137352921848164219492411071228936130762461191564196185114910118922611881888513917712153146227193235347537229322521516718014542248813617191531972142714505519240144

Problem 4: 2492402092341949619347401841041875198202182031161577311941257285491521667219229672211881621592451432318618560812361201172382071222352271769922013259915817462189101108056130187233141312197127179205981692121101632221732337196969131822110021512524417548627103506114978204123128181211814236346515430399015513513311152157420112189119277138882021676618323919018013646200114160165350631262167910238144334214230146151171192261653158161213431911401452461159313720613195248191505228186244583455139542924222112226148941682087115610915344641782142472102436810828123731134321131241772242411722251997612923295223701069721187182171471055710784170217851
Programmer
sumber
1
Klarifikasi: Saya melihat Anda menandai algoritma tercepat , tetapi agak tidak jelas dalam uraian. apakah ini tantangan algoritma tercepat (seperti dalam, kompleksitas waktu terendah) atau kode tercepat (seperti dalam, mengambil jumlah waktu paling sedikit pada mesin tertentu)?
JungHwan Min
2
Juga, haruskah program mendukung nilai apa pun N, bukan hanya 250? / Bagaimana dengan 232masalah ini? Semua kemungkinan atau satu? Saya menyadari bahwa Anda tahu tentang masalah itu, tetapi saya merasa tidak jelas dalam pertanyaan itu. / Jika ini kode tercepat, harus ada cara untuk mengukurnya. Tentu saja menjalankan pada komputer super berbeda dengan menjalankan pada komputer lama. / Karena tidak ada yang mengatakan itu, - Selamat datang di PPCG!
user202729
1
Ini adalah masalah yang menarik, tetapi (setidaknya menurut jawaban sejauh ini) terlalu sepele untuk mendapatkan kompleksitas komputasi yang cukup untuk dapat membedakan secara bermakna antara jawaban untuk menentukan pemenang, yang mengecewakan.
AdmBorkBork
1
@ JoshuaCrotts yang selalu bisa kamu naikkan Nke, katakanlah, 1000 atau 10000.
Οurous
4
Selamat atas pos PPCG # 150.000;)
ETHproduksi

Jawaban:

10

Clingo , ≈ 0,03 detik

Ini terlalu cepat untuk diukur secara akurat — Anda harus mengizinkan kasing input yang lebih besar daripada berhenti secara artifisial di angka 250.

% cat(I) means digits I and I+1 are part of the same number.
{cat(I)} :- digit(I, D), digit(I+1, E).

% prefix(I, X) means some digits ending at I are part of the same
% number prefix X.
prefix(I, D) :- digit(I, D), not cat(I-1), D < n.
prefix(I, 10*X+D) :- prefix(I-1, X), digit(I, D), cat(I-1), X > 0, 10*X+D < n.

% Every digit is part of some prefix.
:- digit(I, D), {prefix(I, X)} = 0.

% If also not cat(I), then this counts as an appearance of the number
% X.
appears(I, X) :- prefix(I, X), not cat(I).

% No number appears more than once.
:- X=0..n-1, {appears(I, X)} > 1.

% missing(X) means X does not appear.
missing(X) :- X=0..n-1, {appears(I, X)} = 0.

% Exactly one number is missing.
:- {missing(X)} != 1.

#show missing/1.

Contoh input

Input adalah daftar ( k , k th digit) pasangan. Inilah masalah 1:

#const n = 250.
digit(0,6;1,9;2,6;3,6;4,4;5,1;6,0;7,8;8,1;9,9;10,6;11,1;12,0;13,5;14,2;15,1;16,5;17,3;18,0;19,2;20,9;21,1;22,3;23,6;24,8;25,3;26,4;27,9;28,6;29,8;30,2;31,3;32,0;33,9;34,2;35,1;36,7;37,5;38,9;39,8;40,5;41,7;42,0;43,5;44,9;45,2;46,0;47,1;48,1;49,8;50,7;51,2;52,0;53,2;54,2;55,4;56,8;57,2;58,0;59,1;60,8;61,3;62,1;63,2;64,2;65,2;66,0;67,2;68,4;69,1;70,2;71,4;72,6;73,9;74,1;75,1;76,2;77,9;78,8;79,9;80,1;81,3;82,3;83,1;84,7;85,4;86,1;87,9;88,7;89,2;90,1;91,9;92,2;93,0;94,7;95,1;96,8;97,2;98,1;99,7;100,3;101,1;102,3;103,7;104,1;105,8;106,0;107,8;108,0;109,8;110,5;111,7;112,2;113,3;114,2;115,1;116,7;117,7;118,1;119,3;120,4;121,2;122,3;123,2;124,4;125,8;126,1;127,5;128,5;129,1;130,0;131,2;132,0;133,0;134,1;135,0;136,1;137,1;138,2;139,5;140,1;141,9;142,1;143,7;144,2;145,6;146,5;147,2;148,0;149,3;150,1;151,6;152,3;153,1;154,1;155,1;156,3;157,7;158,9;159,1;160,1;161,0;162,5;163,1;164,2;165,2;166,1;167,1;168,6;169,3;170,1;171,9;172,4;173,5;174,8;175,1;176,5;177,3;178,2;179,4;180,4;181,2;182,6;183,1;184,5;185,8;186,2;187,1;188,3;189,5;190,5;191,1;192,0;193,0;194,9;195,0;196,2;197,3;198,5;199,1;200,1;201,6;202,1;203,3;204,9;205,6;206,1;207,1;208,6;209,4;210,1;211,2;212,6;213,7;214,6;215,9;216,1;217,1;218,4;219,1;220,6;221,7;222,9;223,6;224,1;225,2;226,2;227,1;228,5;229,2;230,2;231,2;232,6;233,6;234,0;235,1;236,1;237,2;238,1;239,2;240,7;241,4;242,2;243,1;244,3;245,2;246,1;247,9;248,0;249,1;250,8;251,6;252,2;253,0;254,4;255,1;256,8;257,2;258,7;259,7;260,4;261,5;262,1;263,0;264,6;265,5;266,2;267,2;268,4;269,3;270,7;271,2;272,0;273,8;274,3;275,6;276,2;277,0;278,6;279,2;280,2;281,7;282,1;283,6;284,8;285,4;286,6;287,4;288,0;289,4;290,3;291,8;292,1;293,7;294,4;295,3;296,1;297,5;298,7;299,3;300,8;301,1;302,3;303,5;304,6;305,4;306,1;307,1;308,7;309,1;310,6;311,9;312,9;313,5;314,1;315,0;316,4;317,2;318,1;319,0;320,1;321,5;322,1;323,9;324,9;325,1;326,2;327,8;328,2;329,3;330,9;331,8;332,8;333,1;334,4;335,4;336,2;337,2;338,4;339,2;340,3;341,8;342,2;343,3;344,6;345,1;346,2;347,1;348,2;349,3;350,1;351,7;352,1;353,6;354,3;355,1;356,4;357,9;358,2;359,3;360,2;361,8;362,3;363,9;364,2;365,3;366,3;367,8;368,2;369,3;370,4;371,1;372,8;373,9;374,1;375,5;376,4;377,4;378,7;379,1;380,4;381,2;382,1;383,6;384,2;385,7;386,7;387,1;388,4;389,1;390,2;391,0;392,9;393,2;394,4;395,9;396,2;397,1;398,4;399,1;400,9;401,8;402,7;403,5;404,2;405,1;406,7;407,1;408,0;409,9;410,1;411,7;412,1;413,2;414,2;415,3;416,5;417,4;418,1;419,5;420,6;421,1;422,3;423,1;424,4;425,6;426,6;427,2;428,1;429,6;430,5;431,1;432,5;433,0;434,6;435,1;436,8;437,1;438,2;439,2;440,7;441,3;442,1;443,4;444,0;445,1;446,3;447,0;448,2;449,4;450,0;451,1;452,7;453,0;454,9;455,7;456,2;457,1;458,8;459,1;460,1;461,7;462,6;463,1;464,7;465,9;466,1;467,6;468,6;469,5;470,3;471,1;472,7;473,8;474,1;475,8;476,5;477,1;478,1;479,5;480,2;481,1;482,7;483,8;484,2;485,2;486,5;487,2;488,4;489,2;490,1;491,9;492,2;493,4;494,4;495,5;496,1;497,4;498,7;499,2;500,2;501,9;502,9;503,9;504,1;505,6;506,1;507,3;508,5;509,1;510,5;511,9;512,1;513,1;514,1;515,2;516,2;517,2;518,2;519,3;520,4;521,1;522,9;523,1;524,8;525,7;526,8;527,6;528,2;529,1;530,6;531,9;532,3;533,1;534,2;535,0;536,1;537,3;538,1;539,2;540,4;541,1;542,5;543,0;544,6;545,7;546,2;547,3;548,7;549,1;550,4;551,3;552,2;553,0;554,5;555,1;556,1;557,9;558,2;559,5;560,1;561,0;562,7;563,2;564,4;565,3;566,5;567,6;568,1;569,7;570,2;571,2;572,8;573,2;574,4;575,7;576,1;577,9;578,5;579,1;580,3;581,8;582,1;583,6;584,0;585,1;586,2;587,4;588,1;589,5;590,1;591,8;592,4;593,1;594,0;595,3;596,1;597,8;598,4;599,1;600,4;601,2;602,1;603,1;604,2;605,1;606,2;607,8;608,7;609,0;610,9;611,4;612,1;613,1;614,1;615,1;616,8;617,3;618,3;619,1;620,9;621,3;622,1;623,4;624,5;625,1;626,2;627,3;628,2;629,4;630,5;631,1;632,8;633,8;634,1;635,0;636,2).

Contoh output

$ clingo missing.lp problem1.lp 
clingo version 5.2.2
Reading from missing.lp ...
Solving...
Answer: 1
missing(148)
SATISFIABLE

Models       : 1+
Calls        : 1
Time         : 0.032s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time     : 0.032s
Anders Kaseorg
sumber
Solusi ini tampaknya memberikan jawaban yang salah dalam banyak kasus, misalnya 45879362100dengan n = 11dan 1tidak ada (jawaban missing(0)).
politza
@politza Diperbaiki. Haruskah saya juga menambahkan asumsi yang tidak disebutkan bahwa tidak ada nomor yang diulang (selain missing(10)itu juga valid)?
Anders Kaseorg
Saya masih mendapatkan hasil yang salah, misalnya pada contoh ini .
politza
Maukah Anda menulis satu atau dua kalimat tentang ide di balik model Anda?
politza
@politza Benar, ternyata tes yang diberikan bergantung pada asumsi tidak tertulis di atas, jadi saya telah menambahkannya. Program yang direvisi memberikan hasil yang unik pada instance Anda juga. (Tapi saya akan tetap menghargai jika asumsi tersebut dinyatakan secara eksplisit dalam pertanyaan.)
Anders Kaseorg
9

C ++, 5000 kasus uji acak dalam 6,1 detik

Ini praktis cepat, tetapi mungkin ada beberapa testcases yang membuatnya lambat. Kompleksitas tidak diketahui.

Jika ada beberapa solusi, itu akan mencetak semuanya. Contoh .

Penjelasan:

  1. Hitung kemunculan digit.

  2. Tuliskan semua jawaban yang mungkin.

  3. Periksa apakah seorang kandidat adalah jawaban yang valid:

    3-1. Cobalah untuk membagi string dengan angka yang hanya muncul sekali dan tandai sebagai diidentifikasi, kecuali kandidat.
    Misalnya, 2112282526022911192312416102017731561427221884513hanya memiliki satu 14, sehingga dapat dibagi menjadi 211228252602291119231241610201773156dan 27221884513.

    3-2. Jika string yang dipisah memiliki panjang 1, tandai sebagai diidentifikasi.
    Jika ada kontradiksi yang dibuat (diidentifikasi lebih dari sekali), kandidat tidak valid.
    Jika kami tidak dapat menemukan kandidat di string, kandidat tersebut valid.

    3-3. Jika ada pemisahan, ulangi langkah 3-1. Jika tidak, lakukan pencarian brute force untuk memeriksa apakah kandidat tersebut valid.

#include <cmath>
#include <bitset>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>

const int VAL_MAX = 250;
const int LOG_MAX = log10(VAL_MAX - 1) + 1;
using bools = std::bitset<VAL_MAX>;

std::pair<size_t, size_t> count(const std::string& str, const std::string& target)
{
    size_t ans = 0, offset = 0, pos = std::string::npos;
    for (; (offset = str.find(target, offset)) != std::string::npos; ans++, pos = offset++);
    return std::make_pair(ans, pos);
}

bool dfs(size_t a, size_t b, const std::vector<std::string>& str, bools& cnt, int t)
{ // input: string id, string position, strings, identified, candidate
    if (b == str[a].size()) a++, b = 0;
    if (a == str.size()) return true;   // if no contradiction on all strings, the candidate is valid

    int p = 0;
    for (int i = 0; i < LOG_MAX; i++) { // assume str[a][b...b+i] is a number
        if (str[a].size() == b) break;
        p = p * 10 + (str[a][b++] ^ '0');
        if (p < VAL_MAX && !cnt[p] && p != t) { //if no contradiction
            cnt[p] = true;
            if (dfs(a, b, str, cnt, t)) return true; // recursively check
            cnt[p] = false;
        }
    }
    return false;
}

struct ocr {
    int l, r, G;
    bool operator<(const ocr& i) const { return l > i.l; }
};

int cal(std::vector<std::string> str, bools cnt, int t)
{ // input: a list of strings, whether a number have identified, candidate
  // try to find numbers that only occur once in those strings
    int N = str.size();
    std::vector<ocr> pos;

    for (int i = 0; i < VAL_MAX; i++) {
        if (cnt[i]) continue;             // try every number which haven't identified
        int flag = 0;
        std::string target = std::to_string(i);
        ocr now;
        for (int j = 0; j < N; j++) {     // count occurences
            auto c = count(str[j], target);
            if ((flag += c.first) > 1) break;
            if (c.first) now = {c.second, c.second + target.size(), j};
        }
        if (!flag && t == i) return true; // if cannot find the candidate, then it is valid
        if (i != t && flag == 1) pos.push_back(now), cnt[i] = true;
        // if only occur once, then its position is fixed, mark as identified
    }
    if (!pos.size()) { // if no number is identified, do a brute force search
        std::sort(str.begin(), str.end(), [](const std::string& a, const std::string& b){return a.size() < b.size();});
        return dfs(0, 0, str, cnt, t);
    }

    std::sort(pos.begin(), pos.end());
    std::vector<std::string> lst;
    for (auto& i : pos) {      // split strings by identified numbers
        if ((size_t)i.r > str[i.G].size()) return false;
        std::string tmp = str[i.G].substr(i.r);
        if (tmp.size() == 1) { // if split string has length 1, it is identified
            if (cnt[tmp[0] ^ '0']) return false; // contradiction if it is identified before
            cnt[tmp[0] ^ '0'] = true;
        }
        else if (tmp.size()) lst.push_back(std::move(tmp));
        str[i.G].resize(i.l);
    }
    for (auto& i : str) { // push the remaining strings; same as above
        if (i.size() == 1) {
            if (cnt[i[0] ^ '0']) return false;
            cnt[i[0] ^ '0'] = true;
        }
        else if (i.size()) lst.push_back(std::move(i));
    }
    return cal(lst, cnt, t); // continue the split step with new set of strings
}

int main()
{
    std::string str;
    std::vector<ocr> pos;
    std::vector<int> prob;
    std::cin >> str;

    int p[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    for (int i = 0; i < VAL_MAX; i++)
        for (char j : std::to_string(i)) p[j ^ '0']++;
    for (char i : str) p[i ^ '0']--; // count digit occurrences
    {
        std::string tmp;
        for (int i = 0; i < 10; i++)
            while (p[i]--) tmp.push_back(i ^ '0');
        do {           // list all possible candidates (at most 4)
            int c = std::stoi(tmp);
            if (c < VAL_MAX && tmp[0] != '0') prob.push_back(c);
        } while (std::next_permutation(tmp.begin(), tmp.end()));
    }
    if (prob.size() == 1) { std::cout << prob[0] << '\n'; return 0; }
                       // if only one candidate, output it
    for (int i : prob) // ... or check if each candidate is valid
        if (cal({str}, bools(), i)) std::cout << i << '\n';
}

Cobalah online!

Colera Su
sumber
6

Bersihkan , ~ 0.3s

Memperbaiki bug besar dalam algoritme, perlu mengoptimalkannya kembali sekarang.

module main
import StdEnv
import StdLib
import System.CommandLine

maxNum = 250
sample = "11395591741893085201244471432361149120556162127165124233106210135320813701207315110246262072142253419410247129611737243218190203156364518617019864222241772384813041175126193134141008211877147192451101968789181153241861671712710899168232150138131195104411520078178584419739178522066640145139388863199146248518022492149187962968112157173132551631441367921221229161208324623423922615218321511111211121975723721911614865611197515810239015418422813742128176166949324015823124214033541416719143625021276351260183210916421672722015510117218224913320919223553222021036912321791591225112512304920418584216981883128105227213107223142169741601798025"
case1 = "6966410819610521530291368349682309217598570592011872022482018312220241246911298913317419721920718217313718080857232177134232481551020010112519172652031631113791105122116319458153244261582135510090235116139611641267691141679612215222660112127421321901862041827745106522437208362062271684640438174315738135641171699510421015199128239881442242382361212317163149232839233823418915447142162771412092492141987521710917122354156131466216515061812273140130240170972181176179166531781851152178225242192445147229991613515911122223419187862169312013124150672371432051192510724356172282471951381601241518410318414211212870941111833193145123245188102"
case2 = "14883423514241100511108716621733193121019716422221117630156992324819917158961372915140456921857371883175910701891021877194529067191198226669314940125152431532281961078111412624224113912011621641182322612016512820395482371382385363922471472312072131791925510478122073722091352412491272395020016194195116236186596116374117841971602259812110612913254255615723013185162206245183244806417777130181492211412431591541398312414414582421741482461036761192272120204114346205712198918190242184229286518011471231585109384415021021415522313136146178233133168222201785172212108182276835832151134861116216716910511560240392170208215112173234136317520219"
case3 = "1342319526198176611201701741948297621621214122224383105148103846820718319098731271611601912137231471099223812820157162671720663139410066179891663131117186249133125172622813593129302325881203242806043154161082051916986441859042111711241041590221248711516546521992257224020174102234138991752117924457143653945184113781031116471120421331506424717816813220023315511422019520918114070163152106248236222396919620277541101222101232171732231122301511263822375920856142187182152451585137352921848164219492411071228936130762461191564196185114910118922611881888513917712153146227193235347537229322521516718014542248813617191531972142714505519240144"
case4 = "2492402092341949619347401841041875198202182031161577311941257285491521667219229672211881621592451432318618560812361201172382071222352271769922013259915817462189101108056130187233141312197127179205981692121101632221732337196969131822110021512524417548627103506114978204123128181211814236346515430399015513513311152157420112189119277138882021676618323919018013646200114160165350631262167910238144334214230146151171192261653158161213431911401452461159313720613195248191505228186244583455139542924222112226148941682087115610915344641782142472102436810828123731134321131241772242411722251997612923295223701069721187182171471055710784170217851"

failing = "0102030405060708090100101102103104105106107108109110120130140150160170180190200201202203204205206207208209210220230240249248247246245244243242241239238237236235234233232229228227226225224223222221219218217216215214213212211199198197196195194193192191189188187186185184183182181179178177176175174173172171169168167166165164163162161159158157156155154153152151149148147146145144143142141139138137136135134133132131129128127126125124123122121119118117116115114113112111999897969594939291898887868584838281797877767574737271696867666564636261595857565554535251494847464544434241393837363534333231292827262524232221191817161514131211987654321"

dupes = "19050151158951391658227781234527110196235731198137214733126868520474181772192213718517314542182652441211742304719519143231236593134207203121171237201705111617211824810013324511511436253946122155201534113626129692410611318356178791080921122151321949681166200188841675156120546124912883216212189712281541382202411041372421642917614416870223753814121124318415710310515010682172099012716167102179894920613516297239186222232225635312262134019719915382229399107111802082341491811011604815220291125247641482401691871755205639495788414314011714616366130175601931092467744819271230159131158714761192105218019822421812423322919341426216523821428232"

:: Position :== [Int]
:: Positions :== [Position]
:: Digit :== (Char, Int)
:: Digits :== [Digit]
:: Number :== ([Char], Positions)
:: Numbers :== [Number]
:: Complete :== (Numbers, [Digits])

numbers :: [[Char]]
numbers = [fromString (toString n) \\ n <- [0..(maxNum-1)]]

candidates :: [Char] -> [[Char]]
candidates chars
    = moreCandidates chars []
where
    moreCandidates :: [Char] [[Char]] -> [[Char]]
    moreCandidates [] nums
        = removeDup (filter (\num = isMember num numbers) nums)
    moreCandidates chars []
        = flatten [moreCandidates (removeAt i chars) [[c]] \\ c <- chars & i <- [0..]]
    moreCandidates chars nums
        = flatten [flatten [moreCandidates (removeAt i chars) [ [c : num] \\ num <- nums ]] \\  c <- chars & i <- [0..]]

singletonSieve :: Complete -> Complete
singletonSieve (list, sequence)
    | (list_, sequence_) == (list, sequence)
        = reverseSieve (list, sequence)
    = (list_, sequence_)
where
    singles :: Numbers
    singles 
        = filter (\(_, i) = length i == 1) list
    list_ :: Numbers
    list_
        = [(a, filter (\n = not (isAnyMember n (flatten [flatten b_ \\ (a_, b_) <- singles | a_ <> a]))) b) \\ (a, b) <- list]
    sequence_ :: [Digits]
    sequence_
        = foldr splitSequence sequence (flatten (snd (unzip singles)))

reverseSieve :: Complete -> Complete
reverseSieve (list, sequence)
    # sequence
        = foldr splitSequence sequence (flatten (snd (unzip singles)))
    # list
        = [(a, filter (\n = not (isAnyMember n (flatten [flatten b_ \\ (a_, b_) <- singles | a_ <> a]))) b) \\ (a, b) <- list]
    # list
        = [(a, filter (\n = or [any (isPrefixOf n) (tails subSeq) \\ subSeq <- map (snd o unzip) sequence]) b) \\ (a, b) <- list]
    = (list, sequence)
where
    singles :: Numbers
    singles
        = [(a, i) \\ (a, b) <- list, i <- [[subSeq \\ subSeq <- map (snd o unzip) sequence | isMember subSeq b]] | length i == 1]


splitSequence :: Position [Digits] -> [Digits]
splitSequence split sequence
    = flatten [if(isEmpty b) [a] [a, drop (length split) b] \\ (a, b) <- [span (\(_, i) = not (isMember i split)) subSeq \\ subSeq <- sequence] | [] < max a b]

indexSubSeq :: [Char] Digits -> Positions
indexSubSeq _ []
    = []
indexSubSeq a b
    # remainder
        = indexSubSeq a (tl b)
    | startsWith a b
        = [[i \\ (_, i) <- take (length a) b] : remainder]
    = remainder
where
    startsWith :: [Char] Digits -> Bool
    startsWith _ []
        = False
    startsWith [] _
        = False
    startsWith [a] [(b,_):_]
        = a == b
    startsWith [a:a_] [(b,_):b_]
        | a == b
            = startsWith a_ b_
        = False

missingNumber :: String -> [[Char]]
missingNumber string
    # string
        = [(c, i) \\ c <-: string & i <- [0..]]
    # locations
        = [(number, indexSubSeq number string) \\ number <- numbers]
    # digits
        = [length (indexSubSeq [number] [(c, i) \\ c <- (flatten numbers) & i <- [0..]]) \\ number <-: "0123456789"]
    # missing
        = (flatten o flatten) [repeatn (y - length b) a \\ y <- digits & (a, b) <- locations]
    # (answers, _)
        = hd [e \\ e <- iterate singletonSieve (locations, [string]) | length (filter (\(a, b) = (length b == 0) && (isMember a (candidates missing))) (fst e)) > 0]
    # answers
        = filter (\(_, i) = length i == 0) answers
    = filter ((flip isMember)(candidates missing)) ((fst o unzip) answers)


Start world
    # (args, world)
        = getCommandLine world
    | length args < 2
        = abort "too few arguments\n"
    = flatlines [foldr (\num -> \str = if(isEmpty str) num (num ++ [',' : str]) ) [] (missingNumber arg) \\ arg <- tl args]

Kompilasi dengan clm -h 1024M -s 16M -nci -dynamics -fusion -t -b -IL Dynamics -IL Platform main

Ini berfungsi dengan mengambil setiap angka yang harus dikandung string, dan menghitung jumlah tempat urutan digit yang diperlukan ada dalam string. Kemudian berulang kali melakukan langkah-langkah ini:

  • Jika angka tidak memiliki posisi yang memungkinkan, itulah jawabannya
  • Hapus setiap nomor dengan satu posisi yang memungkinkan (panggil ini singles)
  • Hapus setiap posisi dari semua angka yang tersisa yang tumpang tindih dengan posisi apa pun dari nomor yang dihapus sebelumnya (yang singles)
Suram
sumber
1
Menjalankan program dengan input hard-coded bisa menjadi cara yang dipertanyakan untuk membandingkan ini: bagaimana jika kompiler mengoptimalkan seluruh perhitungan dan menulis biner yang hanya mencetak hasil yang telah dikomputasi? (Saya tidak tahu apakah kompiler Bersihkan cukup pintar, tapi saya sudah mendengar hal-hal baik tentang hal itu.)
Anders Kaseorg
2
Anda ... punya poin yang sangat bagus. Saya telah memeriksa dan melakukan hal itu. Saya akan mengubah jawabannya.
Surous
Apakah Anda tahu apakah mungkin untuk mengaktifkan TIO ini? ( Usaha saya )
Anders Kaseorg
1
@AndersKaseorg Tidak saat ini, saya masih bekerja dengan Dennis untuk mendapatkan semua perpustakaan bekerja dengan TIO. Anda dapat menemukan konteksnya mulai dari sini . Pada dasarnya, saat ini, jika membutuhkan lebih dari StdEnv + Dynamics, itu tidak akan berfungsi.
Kamis
Menjalankannya secara lokal, saya mendapatkan "beberapa solusi" pada masalah yang diberikan 2. (Juga, 2 mikrodetik adalah waktu yang mencurigakan — apakah Anda yakin Anda tidak bermaksud milidetik? Saya mendapatkan sekitar 4 milidetik per kasus di laptop saya saat menyediakan banyak kasus sebagai argumen untuk satu eksekusi.)
Anders Kaseorg