“Model.Predict Python” Kode Jawaban

Model.Predict Python

# Import the libraries required in this example:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Preprocess the data (NumPy arrays):
x_train = x_train.reshape(60000, 784).astype("float32") / 255
x_test = x_test.reshape(10000, 784).astype("float32") / 255

y_train = y_train.astype("float32")
y_test = y_test.astype("float32")

# Allocate 10,000 samples for validation:
x_val = x_train[-10000:]
y_val = y_train[-10000:]
x_train = x_train[:-10000]
y_train = y_train[:-10000]

model.compile(
    optimizer=keras.optimizers.RMSprop(),  # Optimizer
    # Minimize loss:
    loss=keras.losses.SparseCategoricalCrossentropy(),
    # Monitor metrics:
    metrics=[keras.metrics.SparseCategoricalAccuracy()],
)

print("Fit model on training data")
history = model.fit(
    x_train,
    y_train,
    batch_size=64,
    epochs=2,
    # Validation of loss and metrics
    # at the end of each epoch:
    validation_data=(x_val, y_val),
)

history.history

print("Evaluate model on test data")
results = model.evaluate(x_test, y_test, batch_size=128)
print("test loss, test acc:", results)

# Generate a prediction using model.predict() 
# and calculate it's shape:
print("Generate a prediction")
prediction = model.predict(x_test[:1])
print("prediction shape:", prediction.shape)
Vast Vendace

Model.Predict Python

#Building the Decision Tree Model on our dataset
from sklearn.tree import DecisionTreeRegressor
DT_model = DecisionTreeRegressor(max_depth=5).fit(X_train,Y_train)
DT_predict = DT_model.predict(X_test) #Predictions on Testing data
print(DT_predict)
Vast Vendace

Jawaban yang mirip dengan “Model.Predict Python”

Pertanyaan yang mirip dengan “Model.Predict Python”

Lebih banyak jawaban terkait untuk “Model.Predict Python” di Python

Jelajahi jawaban kode populer menurut bahasa

Jelajahi bahasa kode lainnya